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 Acquired data combines multi-view 
stereo and photometry information

 Our 3D reconstruction is based on 
combining two complementary 
techniques:
 Multi-view stereo
 Photometric stereo

 Combining stereo and photometry 
yields unique depth solutions 
[Chambolle 1992]

3D Reconstruction - Overview
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 For computing 3D information we 
need to find corresponding points 
in the different views

 We apply a high-pass feature 
transform that is robust with 
respect to different lighting angles

Robust feature computation
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 Features matching for all possible 
depth values yields a cost volume

 Computing the best match in the 
cost volume yields a very noisy 3D 
model

 A global smoothness assumption is 
needed

 We use an energy minimization 
approach based on a Markov 
Random (MRF) field formulation

Stereo Matching
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Markov Random Field (MRF)
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Smoothness potential function



 Solving the MRF model is NP-hard
 We instead solve the following Linear Programming (LP) relaxation 

[Schlesinger 1976]

 The LP is of very large scale (W x H x L2) and hence hard to solve
 We apply an entropic smoothing approach and derive the dual problem
 The dual problem can be solved via block-coordinate descent
 Can be efficiently implemented on graphics processing units (GPUs)

Solving the MRF
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Result of the MRF
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 The light field data also contains photometric information
 The surface normal information is given only in the transport direction
 We pre-compute the surface gradient in the transport direction

Photometric Stereo
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 Having an estimate for the gradient of the depth map in transport direction, 
we can compute a refined depth map using the total generalized variation 
[Bredies, Kunisch, Pock 2007]

 The missing y-gradient is recovered from the regularization term
 Convex but non-smooth functional
 Can be minimized using first-order primal-dual algorithms [Chambolle, Pock, 

2011]

Total Generalized Variation (TGV) regularization
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Result of TGV regularization
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AIT Inline Computational Imaging: Industrial Use Cases
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See our demo!
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