AIT Inline Computational Imaging: Motion Artefact Compensation

Nicole Brosch et al.

AIT Austrian Institute of Technology GmbH Center for Vision, Automation & Control Vienna, Austria

www.ait.ac.at/hpv

AUSTRIAN INSTITUTE OF TECHNOLOGY

TOMORROW TODAY

AIT ICI: Inline Computational Imaging

AIT ICI Light field: Multiple viewing & illumination angles

Štolc et al., JEI 2014], [Antensteiner et al., CIARP 2016], Antensteiner et al., CVPR 2017], [Antensteiner et al., El2017], Valentín et al., JEI 2017], [Blaschitz et al., El 2018], ...

AIT ICI light field: Every view (image) is associated with a different viewing perspective (sensor line)

AIT ICI Light field: Multiple viewing & illumination angles

AIT ICI algorithms & methods

AIT ICI: Computational Imaging

- increased signal-to-noise ratio
- all-in-focus imaging
- highlight / shadow suppression

AIT ICI Light field: Transport synchronization

Perfect synchronization

- Uniform & constant gaps / space instances
- Transport index gaps correspond to transport feed gaps
- Linear EPI lines

AIT ICI Light field: Transport synchronization issues

- Non-uniform transport feed vs. uniform transport index
- "Ripply" EPI lines
- Incorrect resolution in transport direction

Motion artefacts: "Ripply" EPI lines

- Motion artefacts are a serious issue when scanning at high magnifications
- With loosely/not synced camera and transport, jitter may cause visible depth artefacts (ripples)
- AIT ICI allows for an efficient correction of the motion artefacts
- Our algorithm exploits data redundancy inherently comprised in the light field

Original, not corrected, data acquired with no/loose transport sync.

Corrected data using our motion artefact compensation algorithm

Motion artefacts: "Ripply" EPI lines

- Motion artefacts are a serious issue when scanning at high magnifications
- With loosely/not synced camera and transport, jitter may cause visible depth artefacts (ripples)

Original, not corrected, data acquired

with no/loose transport sync.

- AIT ICI allows for an efficient correction of the motion artefacts
- Our algorithm exploits data redundancy inherently comprised in the light field

Corrected data using our motion artefact compensation algorithm

Motion artefacts: "Wobbling"

Motion artefacts: Depth ripples

- Motion artefacts are a serious issue when scanning at high magnifications
- With loosely/not synced camera and transport, jitter may cause visible depth artefacts (ripples)
- AIT ICI allows for an efficient correction of the motion artefacts
- Our algorithm exploits data redundancy inherently comprised in the light field

Original, not corrected, data acquired without transport sync

Corrected data using our algorithm

Depth ripples visible due to transport jitter

Depth ripples suppressed

Motion artefact compensation: Overview

• **Step 1:** Determine true sub-pixel transport indices

True x-indices (\tilde{x}_i) are recovered in an optimization & by constraining them according to *disparities*. -> Two different approaches: Version 1 & Version 2.

Step 2: Warp light field views accordingly

Re-sample views at initially assumed integer indices (uniformly spaced)

Version 1: Constant background disparity

• **Observation:** No transport issues -> the disparity in a background region is constant.

Version 1: Constant background disparity

• Observation: No transport issues -> the disparity in a background region is constant. Transport issues -> the disparity in a background region is not constant.

Version 1: Constant background disparity

• **Compensation:** Enfroce constant disparity **d** and move transport index.

Version 2: Balanced fore- & background disparities

• **Observation:** No transport issues -> backward disparity = forward disparity.

can be calculated anywhere

Version 2: Balanced fore- & background disparities

• **Observation:** No transport issues -> backward disparity = forward disparity.

Transport issues -> backward disparity \neq forward disparity.

can be calculated anywhere

Version 2: Balanced fore- & background disparities

• **Compensation:** Enforce backward disparity = forward disparity.

Motion artefact compensation: Overview

• **Step 1:** Determine true sub-pixel transport indices

True x-indices (\tilde{x}_i) are recovered in an optimization & by constraining them according to *disparities*. -> Two different approaches: Version 1 & Version 2.

• **Step 2:** Warp light field views accordingly

Re-sample views at initially assumed integer indices (uniformly spaced)

Motion artefact compensation: Results

Motion artefact compensation: Results

Motion artefact compensation: Results

Take-home messages

The AIT Inline Computational Imaging system allows multi-line scan light field imaging ...

- even in cases where the transport cannot be controlled with high precision.
- ... at large magnification with correct resolution in the transport direction.
- can be used as a motion sensor itself and does not require additional hardware to compensate for motion artefacts.

Motion artefacts

Thank you for your attention! Nicole Brosch,

nicole.brosch@ait.ac.at

/ / / / / / 11/1/1