

Aç	genda				
1. N	Notivation				
2. 0	Object-oriented Modeling Framework				
3. N	Modeling of Selected Resources				
4. \	/alidation in the Laboratory				
5. l	Integration into Optimization Framework				
6. F	6. Reducing Primary Energy Consumption in Multi-Energy System (MES)				
7. 0	Conclusions				
SENSE S	Object-oriented Modeling of Multi-Energy Sys. www.sense.tu-berlin.de 2 Prof. DrIng. Kai Strunz 20 April 2023 2				

•	 1. Motivation Features of Object-oriented Modeling Framework Abstraction is useful here, because many resources share the same type of operations even for different energy carriers 				
• For example, there are different storage types with common functions:					
		Chemical energy storage (Battery)	Thermal energy storage		
	Energy carrier for charging, discharging	Electric energy	Thermal energy		
	Operations	Energy storing Charging Discharging	Energy storing Charging Discharging		
	Limits	Storage capacity Maximum dis-/charging power	Storage capacity Maximum dis-/charging power		
	Bounds	Initial and final energy level	Initial and final energy level		
	Efficiencies	$\eta_{ m cha}, \eta_{ m dis}, \eta_{ m sd}$	$\eta_{ m cha}, \eta_{ m dis}, \eta_{ m sd}$		
SENSI	Object-oriente Prof. DrIng. I	ed Modeling of Multi-Energy Sys. Kai Strunz	www.sense.tu-berlin.de 20 April 2023	8	

7. Conclusions • Proposed object-oriented modeling framework offers consistent integrated view of multi-energy systems Thanks to applied abstraction, classes are formulated by generalized functions independent of specific energy carriers · Modeling can be validated in the SENSE Smart Grid Lab • Modeling framework is applied in research project "Energy Network Berlin Adlershof" with a real cooling network including ice storage units A comprehensive discussion of the topic is given in (open access): S. Bschorer, M. Kuschke, and K. Strunz, "Object-oriented modeling for planning and control of multi-energy systems," CSEE Journal of Power and Energy Systems, vol. 5, no. 3, pp. 355-364, Sep. 2019 Object-oriented Modeling of Multi-Energy Sys. www.sense.tu-berlin.de 26 Prof. Dr.-Ing. Kai Strunz 20 April 2023