

NEUE NETZTARIFE: WAS SAGT DIE WISSENSCHAFT?

VORSTELLUNG PROJEKT INNOnet

Interaktive Netzoptimierung und Netztarife PV-Kongress 2025

Dipl.-Ing. Carolin Monsberger

AIT Austrian Institute of Technology

PROJEKT DETAILS

Projektlaufzeit: 01.03.2023 – 31.10.2026 (Verlängerung)

Budget: 1.770.823 €, **Förderung:** 868.148 €

Projektpartner:

FRAGESTELLUNG

- 1. Welche Anreize zur Lastverschiebung können durch variable/lastabhängige Netztarife für Haushalte generiert werden?
- 2. Welche Auswirkungen haben diese Lastverschiebungen auf das Stromnetz?

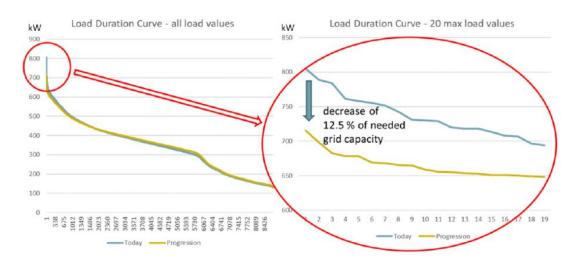


Figure: Dauerlinie eines Netzabschnittes: Die Analyse von 35.000 Viertelstundenwerten zeigt, dass nur 15 Viertelstunden – weniger als 4 Stunden pro Jahr – für die höchsten 13% der Spitzenlasten verantwortlich sind.

Quelle: Simulationsstudie Future Network Tariffs

ÜBERSICHT PROJEKT

Definition of 3 grid tariffs & application "Regulatory Sandbox"

Netz Oberösterreich

Linz Netz

Energienetze Steiermark More than 1000 households the three demos

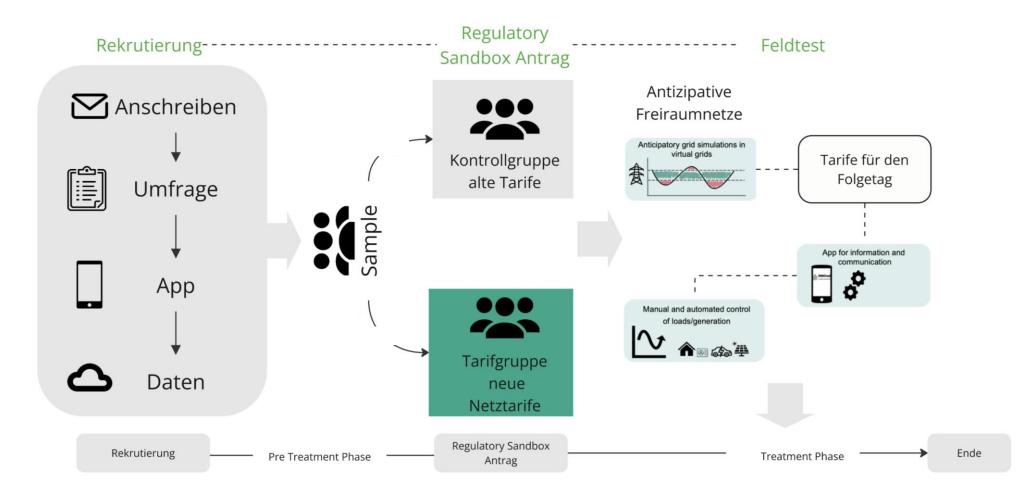
Communication and control

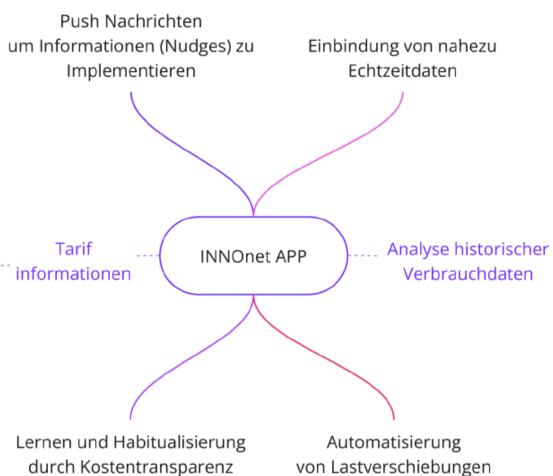
App for information and communication

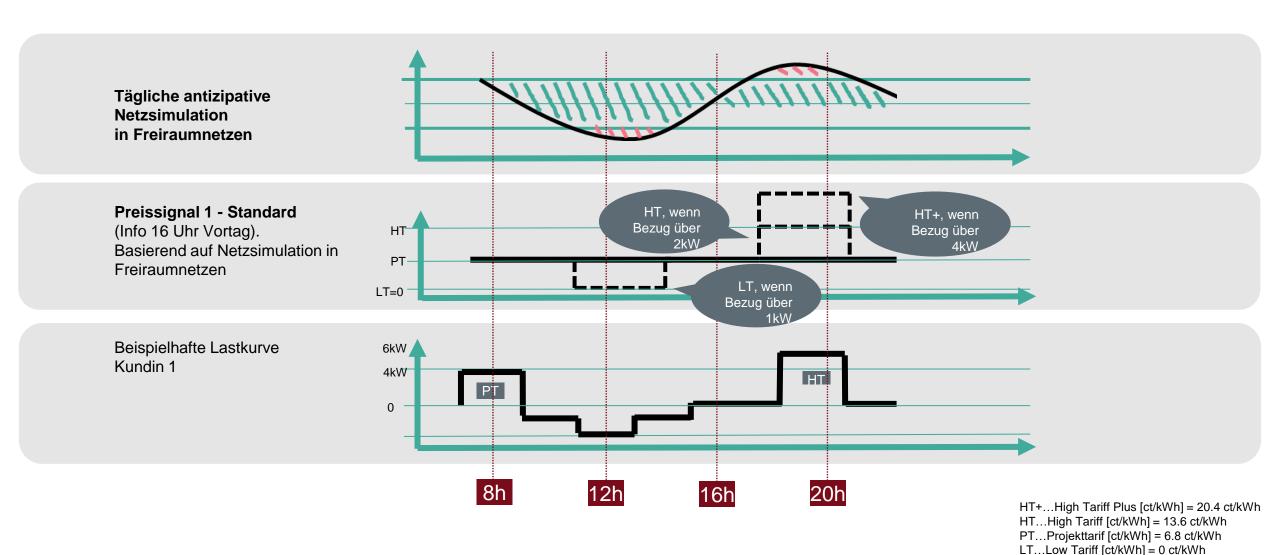
Manual and automated control of loads/generation

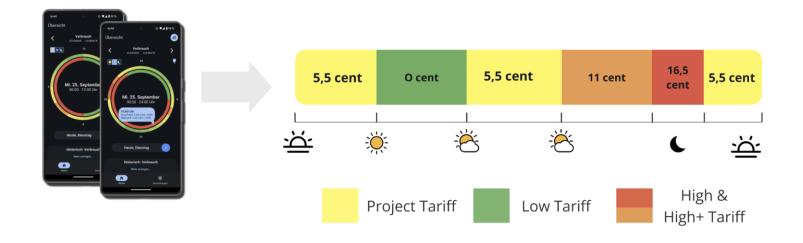
Evaluation and recommendations

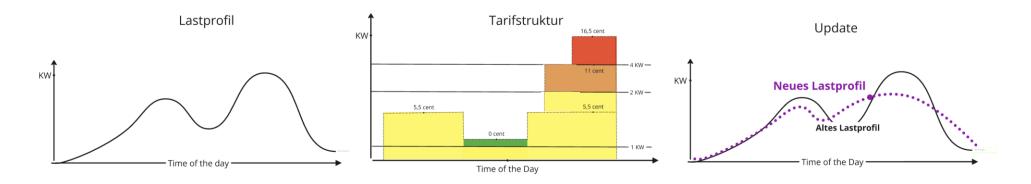
Impact analyses, socio-economic studies, recommendations for action



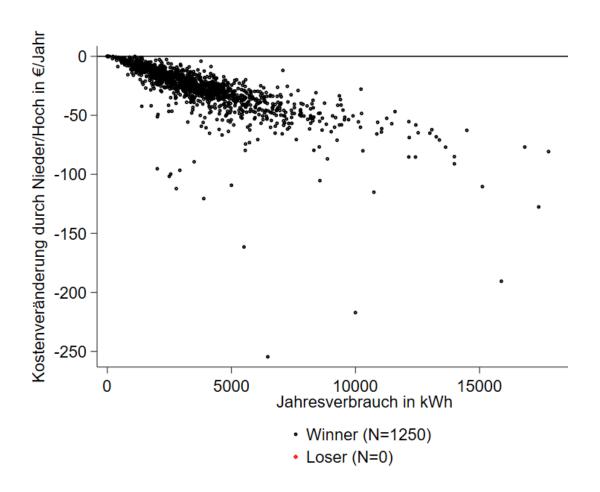





TARIFSCHEMA 1 – NOÖ



TARIFSCHEMA 1 – NOÖ



SIMULATION DES TARIFSCHEMAS 1

BASIEREND AUF EINEM DATENSATZ VON 1.250 ÖSTERREICHISCHEN HAUSHALTEN IN OBERÖSTERREICH IM JAHR 2017

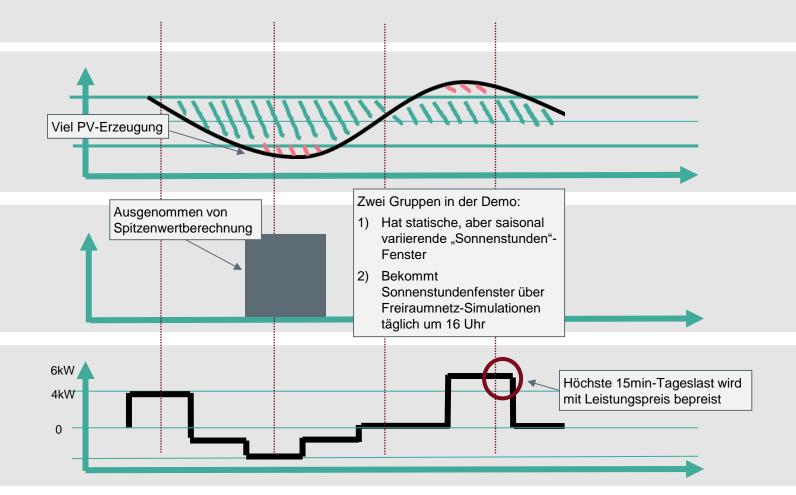
- Fast alle Haushalte können im Modell das "Low Tariff "-Fenster nutzen. Die Aktivierungsrate des Niedertarifs beträgt 16,4 % (bezogen auf alle möglichen 15-Minuten-Zeitintervalle) ohne Änderungen im Verbrauch. Basierend auf einem durchschnittlichen Verbrauch von 2,33 kW und einer Stunde Nutzung des Niedertarifs spart ein Haushalt 82€.
- Andererseits wird der "High Tariff" in etwa 5 % der möglichen Intervalle pro Haushalt und Jahr aktiviert. Dies führt zu einer minimalen tatsächlichen Kostenänderung von rund 5 €.
- Damit zeigt die Simulation durchschnittliche Kosteneinsparungen von 77 € pro Haushalt und Jahr, ohne Verhaltensänderungen.

TARIFSCHEMA 2 – LN

Preissignal 1 - Standard

Leistungspreis wird mit 15min Leistungsspitze des Tages multipliziert

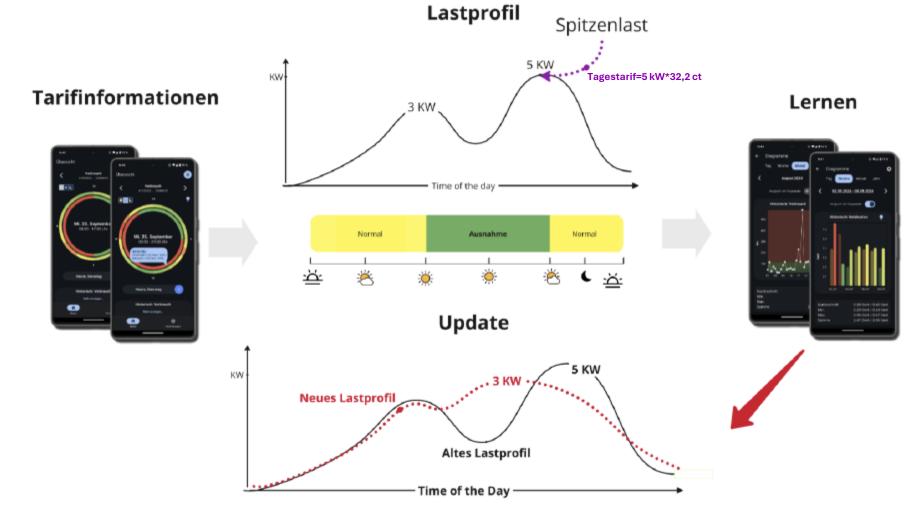
32.2 ct/kW/d


Antizipative Netzsimulation in Freiraumnetzen:

Erwartete "Sonnenstunden" werden täglich berechnet und kommuniziert

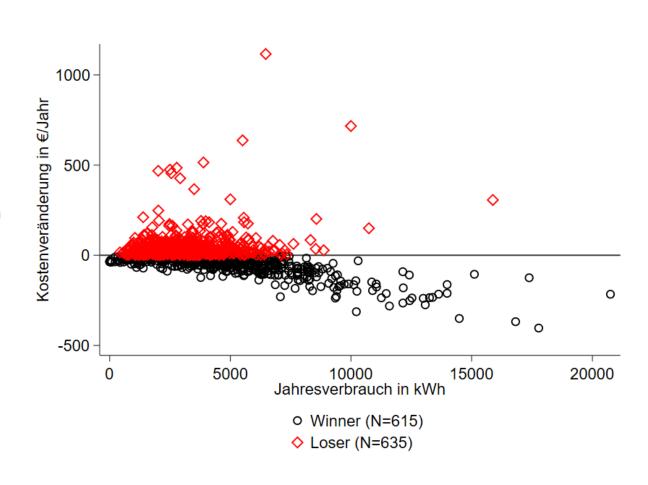
Preissignal 2 – "Sonnenstunden"

Ausgenommen für Leistungsbepreisung sind definierte Sonnenstunden, wo Verbrauch beanreizt wird


Beispielhafte Lastkurve Kundin 1

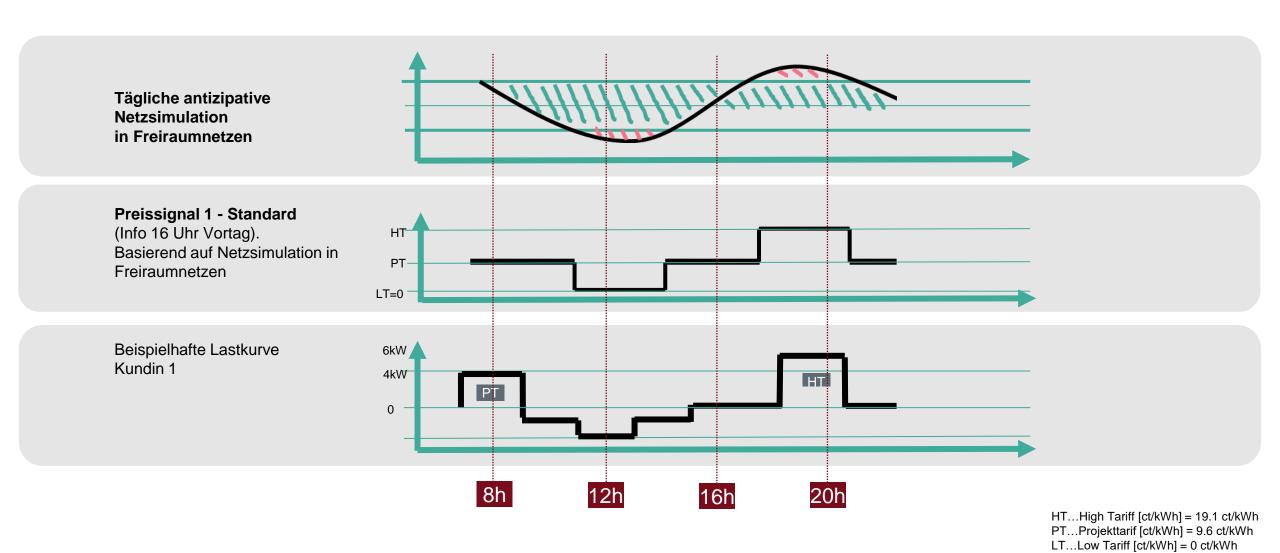
8h

TARIFSCHEMA 2 – LN



SIMULATION DES TARIFSCHEMAS 2

BASIEREND AUF EINEM DATENSATZ VON 1.250 ÖSTERREICHISCHEN HAUSHALTEN IN OBERÖSTERREICH IM JAHR 2017



- Ca. 615 Haushalte würden weniger zahlen als unter dem aktuellen Netztarif-Design. Im Durchschnitt zeigen die Ergebnisse, dass Haushalte mit einer geringeren finanziellen Belastung rund 80 € pro Jahr weniger zahlen würden als beim aktuellen Netztarif-Design.
- Es gibt jedoch auch Haushalte, die zusätzliche Kosten tragen müssten. Die Simulation zeigt, dass von 1.250 Haushalten rund 635 höhere Netzkosten zahlen würden. Die zusätzlichen Kosten würden im Durchschnitt etwa 100 € im Vergleich zu den heutigen Kosten betragen (diese Mehrkosten werden den teilnehmenden Endkund:innen nicht in Rechnung gestellt).
- Nur wenige der höchsten Tageslasten fallen in die "Sonnenstunden". Dies deutet darauf hin, dass das Netztarif-Design 2 Haushalte nicht zufällig belohnt oder benachteiligt, ohne dass sie ihr Verhalten aktiv ändern.
- Die Umverteilung der Kosten entspricht dem Verursacherprinzip, sodass insbesondere jene Haushalte, die stärker zu den höchsten Lastspitzen beitragen, mehr zahlen.

TARIFSCHEMA 3 – ENS

SIMULATION DES TARIFSCHEMAS 3

BASIEREND AUF AKTUELL GEMESSENEN DATEN AUS DEM DEMONSTRATIONSGEBIET (5 KUND:INNEN ÜBER DAS JAHR 2024)

- Es zeigt sich, dass die durchschnittlichen j\u00e4hrlichen Einsparungen f\u00fcr Endkund:innen im Haushaltssektor im Vergleich zum aktuellen Netztarif-Design 47 € betragen.
- Die simulierten Unternehmen könnten bis zu 25% ihrer jährlichen Netzkosten einsparen.

VERGLEICH DER DREI TARIFSCHEMATA

	Tarifschma 1 – Netz Oberösterreich	Tarifschema 2 – Linz Netz	Tarifschema 3 – Energienetze Steiermark
Pro	 Dynamische Anpassung der Netztarife auf prognostizierte Auslastung Stündlicher Anreiz möglich Abrechnung wie bisher in €/kWh Keine Bestrafung geringer Lasten (sind immer im Projekttarif) 	 Täglich ähnliches Tarifschema Zielt auf Lastglättung ab Starker Anreiz, in Fenster mit hoher lokaler Produktion zu verschieben 	 Dynamische Anpassung der Netztarife auf prognostizierte Auslastung Stündlicher Anreiz möglich Abrechnung wie bisher in €/kWh Einfacheres Tarifdesign
Kontra	 Womöglich hohe Gleichzeitigkeiten durch Tariffenster Eventuell komplex für Haushalte Prognose muss akkurat sein 	 Lastspitzen müssen Haushalten bekannt sein (aktives Nutzen der App erforderlich) Eventuell komplex für Haushalte, vor allem Unterschied Energie/Leistung Bisherige Abrechnungsabkehr zu €/kW Prognose der Sonnenfenster muss akkurat sein 	 Womöglich hohe Gleichzeitigkeiten durch Tariffenster Prognose muss akkurat sein

Aktueller Stand:

Stichtag Montag, 10.03.2025	LN	NOÖ
Anzahl Umfrage	612	131
In App registriert	499	100
ZP angegeben	435	83
Mit Verbrauchs-ZP alles ok	152	66
INSGESAMT (inkl. Einsp-ZP) alles ok	66	10

Zeitplan:

- Regulatory Sandbox Antrag wird Ende März/April 2025 eingereicht
- Demostart Juli 2025, Testung 1 Jahr
- Ende des Projekts Oktober 2026
- Link für weitere Informationen zum Projekt:

https://www.ait.ac.at/themen/integratedenergysystems/projekte/projekt-innonet

DANKE!

Carolin Monsberger
carolin.monsberger@ait.ac.at
AIT Austrian Institute of Technology

