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Event Cameras vs. Conventional Cameras

Event cameras are a paradigm shift in digital camera technology

I Low Latency

I Low Bandwidth

I High Dynamic Range
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Motivation
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Motivation

−→

3 / 21



Related Work - Computer Vision with Event Cameras

I Camera Tracking

I Optical Flow

I Image Reconstruction

Event-based, 6-DOF Camera
Tracking for High-Speed
Applications [Gallego et al. ’16]
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Related Work - Computer Vision with Event Cameras

I Camera Tracking

I Optical Flow

I Image Reconstruction

Interacting Maps for Fast Visual
Interpretation [Cook et al. ’11]
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Related Work - Computer Vision with Event Cameras

I Camera Tracking

I Optical Flow

I Image Reconstruction

Simultaneous Mosaicing and
tracking [Kim et al. ’14] and
Real-Time 3D Reconstruction and
6-DoF Tracking with an Event
Camera [Kim et al. ’16]
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Related Work - Computer Vision with Event Cameras

I Camera Tracking

I Optical Flow

I Image Reconstruction

Event-Based Visual Flow [Benosman
et al. ’14]
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Related Work - Computer Vision with Event Cameras

I Camera Tracking

I Optical Flow

I Image Reconstruction

Face Detection and Video
Reconstruction from Event Cameras
[Miyatani et al. ’16]
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Related Work - Computer Vision with Event Cameras

I Camera Tracking

I Optical Flow

I Image Reconstruction

Simultaneous Optical Flow and
Intensity Estimation from an Event
Camera [Bardow et al. ’16]
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Image Formation Process

Event cameras report an event en = {xn, yn, θn, tn} if pixel intensity at
(xn, yn) has changed by a threshold ∆± in log-space. For the underlying
image in intensity space this means:

f n(xn, yn) = un−1(xn, yn) ·

{
c1 if θn > 0

c2 if θn < 0
,

with c1 = exp(∆+), c2 = exp(−∆−).
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Reconstruction by Denoising

Problems:

I u0 is unknown and can not be recovered

I Noise in events (possibly not iid)

Goal of this work
Recover a denoised un from f n (fast).

Our Solution:

un = argmin
u∈C 1(Ω,R+)

[E (u) = D(u, f n) + R(u)] ,

I where D(u, f n) models camera noise

I and R(u) enforces regularity in the solution

Remaining questions
How to choose D and R and what about the timestamps tn?
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Surface of Active Events

[Benosman et al. ’14]
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Surface of Active Events

surface S ⊂ R3 as the graph of a scalar function t(x , y)

X = ϕ(x , y) =
[
x , y , t(x , y)

]T
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Defining a Regulariser on the SAE

Given a smooth function s ∈ C 1(S ,R) on the manifold, we can define
ds(Y ) = 〈∇g s,Y 〉g ∀Y ∈ TXM [Lee et al. ’97], with

∇g s =
(
g11sx + g12sy

)
ϕx +

(
g21sx + g22sy

)
ϕy ,

where g ij denotes the components of the inverse of g , the metric tensor

g =

[
〈ϕx , ϕx〉 〈ϕx , ϕy 〉
〈ϕx , ϕy 〉 〈ϕy , ϕy 〉

]
.
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where g ij denotes the components of the inverse of g , the metric tensor

g =

[
〈ϕx , ϕx〉 〈ϕx , ϕy 〉
〈ϕx , ϕy 〉 〈ϕy , ϕy 〉

]
.

This allows us to define the TV norm on S as

TVg (s) =

∫
S

|∇g s|ds =

∫
Ω

|∇g s|
√
det(g)dxdy .
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Effect of Regularization on a Surface

ROF denoising on a flat surface
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Effect of Regularization on a Surface

ROF denoising on a ramp
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Effect of Regularization on a Surface

ROF denoising on a sine wave
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Data Term

Measures the distance of the optimized image u to the current data f n

under some camera noise model assumptions.

D(u, fn) Result Convex

‖u − f n‖ 7 3

‖u − f n‖2 (7) 3∑
i log

(
ui
f ni

)2

3 7∑
i ui − f ni log ui 3 3
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Data Term

We therefore choose:

λ

∫
S

(u − f n log u)ds = λ

∫
Ω

(u − f n log u)
√
G dxdy ,

known as generalised Kullback-Leibler divergence.

I Minimiser is the ML-estimate when assuming Poisson noise between
u and f (dependent on the absolute light intensity) [Ratner and
Schechner ’07]

I Convex → easy to minimise
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Energy Minimisation

We minimze the original energy using the primal-dual energy formulation

min
u

max
p

[
D(u, f n) + 〈Lgu, p〉 − R∗(p)

]
, (1)

with Lg being the discretised operator ∇g with the algorithm of
[Chambolle and Pock ’11].

I Algorithm is still defined in pixel-space → parallelizable on GPUs

I Converges in less than 50 iterations due to small image size of
128× 128
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Experiments - Timing

I NVidia GTX 780 ti - TitanX

I ≈ 600 frames/sec

I ≈ 500.000 events/sec → collect
500-1000 events before
denoising
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Experiments - Influence of Manifold Regularization
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Experiments - Influence of Manifold Regularization
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Experiments - Influence of Manifold Regularization

15 / 21



Experiments - Comparison to [Bardow et al. ’16]

[Bardow et al. ’16]

16 / 21



Experiments - Comparison to [Bardow et al. ’16]

OURS
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Experiments - Video
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Conclusion

I Image Reconstruction without camera tracking

I Fast enough to achieve Real-Time performance

I Exploitation of the Surface of Active Events

Software for DVS128 and DAVIS240 can be downloaded from
https://github.com/VLOGroup
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Outlook and Open Questions

I Definition of data term (real camera noise model still unknown)

I Quantitative evaluation of the result (blind Image Quality Analysis
or comparison to ground truth)

I Weighting of data term dependent on the number of events per
reconstructed image
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Thank you for your attention!
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Log L2 Data Term

d̆(t) =

{
d(t) if log t < 1

d(e) + d ′(e)(t − e) = − 1
2 + t

e else
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