
Dealing with Advanced Persistent Threats

in Smart Grid ICT Networks

Florian Skopik, Ivo Friedberg, Roman Fiedler

Safety and Security Department

AIT Austrian Institute of Technology

firstname.lastname@ait.ac.at

Abstract—With the increasing use of novel smart grid tech-
nologies, a comprehensive ICT network will be established in
parallel to the electricity grid, which due to its large size, number
of participants and access points will be exposed to similar
threats as those seen on the current Internet. However, modern
security systems that are applied in today’s highly dynamic ICT
networks, including malware scanners and intrusion detection
systems, apply a kind of black-list approach, where they consider
only actions and behavior that match to well-known attack
patterns and signatures of malware traces. We argue that for
the smart grid a more restrictive approach, that cannot be
circumvented by customized malware, will increase the security
level tremendously. Therefore, in this paper we present a smart
white-list approach. Our anomaly detection technique keeps track
of system events, their dependencies and occurrences, and thus
learns the normal system behavior over time and reports all
actions that differ from the created system model. The application
of such a system is promising in a smart grid environment which
mostly implements well-specified processes, resulting in rather
predictable and static behavior. We demonstrate the application
of the system in a small-scale pilot case of a real utility provider.

Keywords-anomaly detection, event correlation, ict security

I. INTRODUCTION

A complex ICT network is currently being established in

parallel to the existing power grid in order to make it smarter.

This way, sensors can report operational data within fractions

of seconds, and enable control loops to react much more

dynamically to changing load conditions, and finally, enable

more efficient energy distribution. Unfortunately, this added

complexity makes the power grid also more vulnerable to non-

conventional attacks. While in the past utility providers and

other grid stakeholders had to deal with safety concerns and

physical security only, a large ICT network with access points

in every household opens up entirely new attack surfaces.

Advanced persistent threats (APTs) [1] refer to attacks

carried out typically by a group with both the capability and

the intent to persistently target a specific entity undercover.

One prominent example that raised awareness of APTs in the

SCADA (supervisory control and data acquisition) domain

is the Stuxnet malware [2] which specifically targeted the

widespread Siemens WinCC/PCS 7 systems. SCADA systems

are an essential cornerstone of smart grid implementations.

This type of computer systems control industrial processes

on a large scale that can include multiple sites over large

distances. In the smart grid, SCADA systems are used to

remote control the operational behavior in power plants,

distribution stations and substations. Since SCADA systems

are increasingly coupled to the Internet to enable cost-efficient

monitoring and remote maintenance, their security is a major

concern of today’s utility providers.

APT Scenario. In a common scenario, an attacker tries

to first intrude into the corporate LAN, e.g., by exploiting

a weakness in the Web server which enables SQL injection.

This kind of attack gives the intruder elevated permissions

and the chance to take over the Web server for his own

purposes. Assuming that the intruder uses a zero day exploit,

i.e, an unknown vulnerability, it is highly unlikely that this

attack will be discovered easily. In a second step, once the

intruder has established a beachhead, he uses the Web server

to drive further attacks within the network. For example, he

will try to expand his access to critical systems, such as

a SCADA application server. Here he could try to change

the configuration of control programs. If he is cautious, this

second stage might be undiscovered, because all commands

that are issued to the SCADA application server come from

a trusted entity within the corporate LAN. As a third step,

the intruder could use the application server to send fabricated

commands to remote intelligent electronic devices (IEDs), e.g.,

in substations or relay stations, to disturb critical processes and

produce considerable harm.

Contribution. The contributions in the paper are as follows:

• APTs in Smart Grid ICT Networks: We raise awareness

for advanced persistent threats in smart grid ICT networks

and outline the challenge of detecting them.

• Anomaly Detection Mechanism: We introduce a novel

concept of dealing with APTs that works especially well

for SCADA backends due to their rather restrictive and

predictable behavior.

• Pilot Case and Discussions: We demonstrate the appli-

cability of the proposed anomaly detection approach in a

real smart grid ICT network.

The remainder of the paper is structured as follows. Section

II provides an overview about related work. Section III intro-

duces the rough concept of our proposed anomaly detection

approach, while Sect. IV explains the model in detail. Then,

Sect. V discusses its application in a areal context and Sect.

VI concludes the paper.



II. RELATED WORK

The electric grid is perhaps the most critical infrastructure

today, and thus, safety, reliability and availability are of top

priority. In course of the roll out of smart grid components,

security and privacy issues have become the focus of many

discussions [3], [4]. Especially, security in the SCADA domain

has been extensively discussed in recent years [5], and espe-

cially after the Stuxnet [2] incidents. Many of today’s systems

still lack security and authentication in the design, deployment

and operation. Therefore, anomaly detection approaches have

been massively studied [6] for decades – especially in context

of network intrusion detection systems for computer networks

[7]. However, since systems become increasingly complex

and interconnected, novel approaches that capture the big

operational picture of a large-scale system, such as the smart

grid, and that can cope with today’s large amount of data, ag-

gregated from distributed systems, need to be developed. Our

proposed approach utilizes some already existing techniques,

but applies them in different context or on a larger scale.

For instance, approaches in bioinformatics use fingerprinting

techniques for data reduction, and alignment mechanisms for

fast and fuzzy similarity search. These techniques have been

used for single systems in the past, such as for detecting

illegitimate accesses in database systems [8], and are now

being applied on a much larger scale.

III. APT DISCOVERY THROUGH ANOMALY DETECTION

Discovering APTs requires a detection method which does

not rely on predefined signatures, as anti-virus scanners or

most intrusion detection systems do. The reason for this is

that on the one side, APTs may use widely unknown zero

day exploits to intrude into a system, on the other side the

application of social engineering [9] allows the infiltration

of systems without the exploitation of technical weaknesses.

Thus, we introduce an approach that heavily relies on statis-

tical analysis of system behavior reflected in system log files

to detect anomalies that are potentially effects of APTs.

Approach. Almost every modern ICT component and ser-

vice produces logging data to report events, internal state

changes, and committed actions. This data is a valuable source

to establish situational awareness about the current status of

ICT networks and is utilized by our approach. From bottom

to top, we utilize software to collect distributed log files and

maintain the temporal order of log messages (in particular

Graylog2). Once all messages have been aggregated and are

available through a common interface, the system creates

and extracts search patterns from single log lines (cf. Sect.

IV). These search patterns are initially random text fragments

and are periodically refined based on their occurrence and

usefulness in later stages of the analysis. Using information

about occurred search patterns enables the system to determine

the event type(s) that caused the corresponding log lines (e.g.,

a connection has been opened, a switching command issued

etc.). Again, this classification process is periodically refined

using a self-learning system approach. So, on top of the third

layer the system has a clear view about recent events in

the infrastructure. Finally on the top layer, the focus of our

algorithm lies on the timely correlation of different events,

including their relative position to each other. For that purpose

it creates hypotheses about causes and effects and evaluates

them for a certain time span. If a hypothesis can be confirmed

as valid, it becomes a part of the system model. An ongoing

statistical analysis of correlation results allows the system to

infer the degree of deviation of these ”if-then” hypotheses and

therefore, a degree of anomalous behavior.

IV. MODEL DEFINITION

The proposed anomaly detection method is a self-learning

approach that continuously creates hypotheses about correlated

events and tests them at run-time. We distinguish between (i)

a learning phase (to capture a stable system model) and (ii)

an operational phase (to trigger alerts in case of deviations

from the system model). However, both phases are executed

in parallel1,which means the system continuously learns also

in its productive operation, and thus, has the ability to adapt

to changing situations.

A. Basic Definitions

A basic unit of logging information, e.g., one line for line-

based logging, one binary log data record or one XML-element

is called a log-atom La which consists of a series of single

symbols s (Eq. 1).

La = s1 . . . sn (1)

A log event Le (Eq. 2) is the association of a log-atom La

with a timestamp t which describes when La has been created.

Le = 〈La, t〉 (2)

A search pattern P̂s (Eq. 3) is a substring (an n-gram) of a

log-atom La. Search patterns are randomly created on the fly

(see later).

P̂s = s1+i . . . sm+i, where 0 ≤ i and m+ i ≤ n (3)

The process of vectorization transforms a log-atom La into

an n-dimensional pattern vector - the so-called atom-vector ~P

(Eq. 4). This step massively reduces the amount of data to be

processed in the next steps and speeds up the overall anomaly

detection tremendously. During the process, all known search

patterns {P̂s} are looked up in the log-atoms and component

values pi ∈ {0, 1} are set depending on a match or mismatch

of the search process.

~P = p1 . . . pn, where pi ∈ {0, 1} (4)

Smoothing and folding is the process of enriching the

pattern vector with additional components that contain further

attributes, e.g., coming from systems not under scrutiny. This

enrichment vector ~P ′ can also carry contextual information,

e.g., if a maintenance operation was going on when a log

1not considering the startup phase here



line has been produced. Notice that ~P ′ does not influence the

further classification.

Log event classification is the process of determining to

what event class C a log-atom La belongs to. One La can

belong to a multitude of classes, e.g., a log-atom might be

an ‘incoming connection event’, an ‘ssh service event’ and

an ‘IP-zone X service event’ at the same time. On the other

side, a log-atom might also belong to no class at all. Notice

that La is categorized, not Le, because the categorization is

timestamp-independent.

An event E (Eq. 5) is finally a log-event Le that belongs to

a known (meaningful) class C. Only these events are further

investigated by the anomaly detection system.

E =
〈

Le, ~P ′, C
〉

(5)

A hypothesis H (Eq. 6) is a non-validated correlation rule

of two events E1 and E2. The relation → is the logic conse-

quence operator (i.e. E1 → E2), while the time window tw
describes the time span (relative to t from Le that triggered E1)

in which the implication has to hold. The system automatically

creates such correlation rules and subsequently tests them in

order to learn about event dependencies (see later). Notice,

currently independent rules with a fixed tw of either 10ms,

100ms or 1000ms are created. In the future we plan to let the

system dynamically adapt tw, i.e., starting with a high value

and then step wise reduce it until rules just match.

H = 〈E1, E2,→, tw〉 (6)

The evaluation process determines over a longer time win-

dow te the number of rule matches and mismatches2. If the

predictability, i.e., one of these numbers remains stable (or at

least predictable), the initial hypothesis becomes a confirmed

hypothesis. Otherwise, this means the evaluation results do

not become stable after te, a hypothesis is discarded without

further action. The collection of all confirmed hypotheses

forms the system model M (Eq. 7), which describes the

normal system behavior.

M = {H |H is confirmed} (7)

In the operational phase of our anomaly detection approach,

the confirmed hypotheses in M are continuously evaluated.

This means the stability of the number of matches and mis-

matches for each single confirmed correlation rule is evaluated

and if a significant statistic deviation is measured an alert is

raised. An advanced evaluation mode accounts for multiple

alerts that are triggered at the same time, and therefore

amplifies the raised alert level. Notice, infrastructure changes

(hardware and software; i.e., everything that alters the usual

log output) will render a part of the learned hypotheses invalid

and will need a cleanup.

2Notice, te is not constant but reduced over time depending on the
stability of the rule evaluation results. This means in the beginning te will be
rather long to easily find stable values, while later it will be reduced to allow
for faster reactions on rule violations

B. Search Pattern Creation and Log Line Vectorization

Search patterns P̂s are not created manually but by the

system based on currently processed log atoms La. The

basic idea is that the system uses patterns to cover/index the

occurring log atoms best. Thus, it creates patterns for (i) a non-

indexed La (e.g., when new log sources are being connected),

but also (however less frequent) for (ii) a well-covered La

in order to refine the system model M . For that purpose we

apply a simple but effective token bucket algorithm. Here,

every processed La increases the number of tokens in a bucket.

If there are enough tokens in the bucket to ‘buy’ a new pattern,

the system does so. An important configuration parameter

is the price of a pattern. This is an easy way to overcome

the pattern balancing problem. This problem deals with the

fact that rarely occurring log atoms are not properly indexed

by patterns in the current pattern vector, while frequently

occurring log lines are indexed (i.e., covered with patterns)

very well. However, especially the rarely occurring log atoms

are the most interesting ones since they represent exceptional

events. For that purpose we configure a cheaper price for rare

log atoms, i.e., less tokens are withdrawn from the bucket

when a pattern for a rare line is created, and thus, allows

the creation of several patterns for one rare La. On the other

side, buying a pattern for a well covered type of log atom is

expensive, but still affordable from time to time.

The process of log line vectorization parses incoming La

byte-wise and creates ~P according to matching search patterns.

This processes uses simple but effective hashtable lookups to

achieve linear complexity.

C. Event Classification

After the vectorization of an La follows the classification.

An event class C (Eq. 8) is defined as the combination of a

mask ~Cm and a target value ~Ct.

C =
〈

~Cm, ~Ct

〉

(8)

Each generated atom-vector ~P is assigned to one or more

classes wrt. the result of a bit-wise comparison (Eq. 9).

~Ct ≡ ~P ∧ ~Cm (9)

Event classes C are automatically defined using the fol-

lowing scheme. Each log-atom La is characterized by its

corresponding ~P . If a ~P does not match to any defined class,

a new class is created, using the same token bucket algorithm

as in the search pattern creation step.

D. Hypothesis Evaluation and System Model Updates

Hypotheses are continuously created after correlating two

random event classes by setting them in an implication relation

Ei → Ej |i6=j . They are then evaluated and can become part of

the system model. This evaluation process foresees one event

queue Qi for every existing hypothesis H (modeled as rule).

All queues Qi listen to events relevant to the respective rule,

i.e. they add E|E=E1∨E=E2
. A periodic evaluation process

acts on the entries in the respective Qi as given in Table I.



occurence evaluation result

E1 ∧ ¬E2 Given tw has passed the rule evaluates to false and a mismatch

counter is increased. E1 will be deleted.

E1 ∧ E2 Given both events occurred within tw the rule evaluates to true

and a match counter is increased. E1 and E2 will be deleted.

¬E1 All occurrences of E2 that lack an E1 are deleted without an

evaluation result being returned.

TABLE I
POSSIBLE EVALUATION RESULTS OF A HYPOTHESIS

Both, a match and mismatch counter are evaluated by a

significance function sc (Eq. 10) to decide if an hypothesis

should be part of the system model M , and – in case H ∈ M

– if alerts should be raised. Since the continuous evaluation

of a hypothesis produces a binary stream, the whole process

can be interpreted as a Bernoulli process, i.e., discrete-time

stochastic process that takes only two values. The function sc

currently implements a simple binomial test to evaluate the

probability of the current bit-stream of a hypothesis. In case

the evaluated rule is part of the system model, the value of θ

reflects the probability of an anomaly.

θ = 1− sc(countmatched, countmissed) (10)

The subsequent application of Eq. 10 considers the last 10,

100, and 1000 evaluation results θ and tracks their develop-

ment [10]. Looking at a larger set of evaluation results (e.g.

the last 100) can trigger anomalies with higher certainty than

those triggered by only 10 results. However, the smaller focus

is required to detect short but sudden/dense anomalies.

V. PILOT USE CASE AND DISCUSSION

We evaluated the feasibility of our proposed approach in a

real setting and rate its efficiency on data (approx. 200.000 log

lines over 3 days) obtained from an Austrian utility provider.

A. Evaluation Preparation

Use Case Description. The testing environment is basically

a branch of a real network infrastructure from the utility

provider’s SCADA system that is coupled to the corporate

LAN. The infrastructure consists of (1) a firewall that records

incoming connections, (2) a switch that forwards connections

to a SCADA system, and (3) the SCADA system itself which

issues switching commands and provides measurement read-

ings on request. We collect logs from all these systems, merge

them, and apply the proposed anomaly detection algorithm.

Data Set Description. Listing 1 provides a short excerpt

of the firewall logs. Notice the first line which describes

the semantics of the single fields. Furthermore notice that

some information has been removed or altered due to security

reasons. Basically, the firewall records accepted and dropped

connection attempts from the corporate LAN and the outside

world respectively.

1 "Number" "Date" "Time" "Interface" "Origin" "Type" "Action" "Service"
"Source Port" "Source" "Destination" "Protocol" "Rule" "Rule
Name" "Current Rule Number" "User" "Information" "Product" "
Source Machine Name" "Source User Name"

2 "5487639" "6May2013" "10:59:58" "eth3.842" "mntfwp33" "Log" "Accept" "
ntp-udp" "ntp-udp" "[removed-url].at" "[removed-url].at" "udp" "
834" "--> RemoteNet to Sub" "834-MNT_ON_PX_RN_Global" "" "
service_id: ntp-udp" "VPN-1 Power/UTM" "" ""

3 "5515746" "6May2013" "11:02:22" "eth4.1151" "mntfwp33" "Log" "Accept"
"cust-tcp-3505-3506-iec104" "52094" "[removed-url].at" "[removed
-url].at" "tcp" "839" "--> remnet IEC 104 to VX" "839-
MNT_ON_PX_RN_Global" "" "service_id: cust-tcp-3505-3506-iec104"
"VPN-1 Power/UTM" "" ""

Listing 1. Firewall log (excerpt from 221 lines).

Listing 2 shows an abstract from the SCADA logs. Here

measurement values from the system under supervision are

transfered to the requester through a previously established

connection via the aforementioned firewall. Logs from the

switch are not shown due to space limitations.

1 Tele000592/06.05.2013 11:01:20,12/In /Source=4123/Len=21 Measured
float/36 Cause=3() Number=1 Common=27/16 floating point Info/
Obje=12/17/66 Val=5.97 QDS=0x00 Date/Time=06.05.2013/11:01:20
,042 - IV=0 DST=1

2 Tele000593/06.05.2013 11:01:21,17/In /Source=4123/Len=21 Measured
float/36 Cause=3() Number=1 Common=27/16 floating point Info/
Obje=12/15/66 Val=99.65 QDS=0x00 Date/Time=06.05.2013/11:01:20
,780 - IV=0 DST=1

Listing 2. SCADA log (excerpt from 2854 lines).

B. Evaluation Run

During the evaluation run the algorithm created 26 search

patterns (Listing 3, separated through double slashes) which

are used to classify the log events; determined 14 distinct

event classes (that characterize re-occuring events) and 25

stable (i.e., significant and not just random) rules that describe

correlations between events on the given data set.

1 "service // .at // 5.2013/11: // 21 Measu // 130 // r=1 Comm //
2 5/66 // flo // 16 // =3() // RN_Glob // 11/26/5 // ing poin //
3 Power/UTM" // easur // 3.842" " // 10/40 // "-- // 1:24 // teNet to//
4 .05.2013/ // =11/26 // cust-tcp // z-ns // mmon=27/1 // fo/Ob //

Listing 3. Generated search patterns for event classification.

Listing 4 shows a dump from one of the 25 stable rules,

including detailed information of the two correlated events

E1 and E2 (and their classes respectively) and the rule

configuration (tw (cf. Eq. 6), and significance value (cf. Eq.

10)). In detail, Line 3 and 8 hold ~Ct, while Line 4 and 9

describe ~Cm of the corresponding event classes C (cf. Eq. 8)

of the two identified events. The applied search patterns are

given in Line 6 and Line 11 respectively.

1 ImplicationCorrelationRule [47]
2 ConditionType: EventClass [18]
3 value=00000000000000000101001110001000
4 mask= 00000000000000000111011110001000
5 lastLine: /In /Source=4123/Len=21 Measured float/36 Cause=3()

Number=1 Common=27/16 floating point Info/Obje=12/14/66 Val
=96.83 QDS=0x00 Date/Time=06.05.2013/17:41:41,589 - IV=0 DST=1

6 triggered by: easur, ing poin, =3(), 16 , flo, 21 Measu
7 ImpliedType: EventClass [42]
8 value=00000000000010101010010000000011
9 mask= 00000000000110101011011010100011

10 lastLine: "1 "eth3.842" "mntfwp33" "Log" "Accept" "ntp-udp" "ntp-
udp" "[removed-url].at" "[removed-url].at" "udp" "836" "-->
RemoteNet to Sub" "834-MNT_ON_PX_RN_Global" "" "service_id: ntp-
udp" "VPN-1 Power/UTM" "" ""

11 triggered by: teNet to , "--, 3.842" ", Power/UTM", RN_Glob, .at,
"service

12 Tw: [-1000ms, 0ms]
13 Aging Score: [704.0]
14 Significance: [0.93]

Listing 4. Machine generated system rule consisting of a SCADA event
(conditional event) and an implied (firewall) event (at most 1 second before
the SCADA event) and instance data of the last match (compare with log).

Anomaly Injection. After the system has started and

learned a set of rules, we inject an anomaly to test the

detection capabilities. For that purpose, we bypass the firewall

and request some measurement values from the SCADA

system. Many common attacks would cause a similar behavior

deviation, including the APT described in the introduction.



We expect our algorithm to detect this change in the system

utilization behavior by discovering that SCADA events occur

without a corresponding firewall entry. Subsequently, the rule

in Listing 4 should fail and trigger an alert.

C. Evaluation Results

Anomaly Detection Performance. The algorithm analyzes

the degree of anomaly for the (series of) incoming events.

The subsequent application of Eq. 10 accounts for the last

10 and 100 evaluation results (cf. (t eval)) and tracks their

trend. Figure 1 depicts the outcome for the rule given in

Listing 4. As one can see, the injected anomaly at tick 200

causes a value drop immediately for t eval=10 (blue curve),

and shortly delayed for t eval=100 (red curve). Notice, Figure

1 shows the full experiment run, including the startup phase.

Therefore, in the beginning the system needs to collect enough

evaluation results (10 or 100) in order to calculate reasonable

results. While a short evaluation interval (reflected by the blue

curve) allows a fast detection of the anomaly, a longer interval

allows a more reliable detection, however will react less

dynamically since an adequate number of evaluation results

must be calculated prior to detection.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 200 400 600 800 1000

1
-p

(a
n
o
m

a
ly

)

evaluation tick

t_eval = 10 ticks

t_eval = 100 ticks

Fig. 1. Evaluation results over a short time interval.

Accuracy and Coverage. The generated system model M

describes the overall system behaviour rather than just security

related events. Hence, we could define false-positives in our

approach as behaviour which is considered anomalous with

respect to our model but not being security-relevant (e.g.,

deviating measurement values etc.). However, given the nature

of the approach we argue that these types of alerts should

not be considered typical false-positives since they are indeed

anomalies with respect to the overall system behaviour model.

We further argue that this is not a design weakness of our

algorithm but an essential strength to detect attacks whose

anatomy is not known in advance (APTs). We further define

false-negatives as deviations of normal system behaviour that

are not discovered by the algorithm. This happens in case log

lines occur too rarely and thus never become part of the system

model. This is not the case in our evaluation dataset.

In the investigated system, after about 7.000 line we can

assume that we cover every log line by at least one stable

rule. After 50.000 lines we can assume an almost stable rule

��

��

���

���

� ����� ����� ����� ����� �����

F
R
X
Q
W�
S
H
U�
OLQ
H

HYDOXDWLRQ�WLFN

�SDWWHUQV

�HYHQWV

�UXOHV

�SDWWHUQVBDYJ

�HYHQWVBDYJ

�UXOHVBDYJ

Fig. 2. Saturation of M over a long time interval.

set (Note, the rule set is continuously adapted and thus never

becomes fully stable) covering most possible implications.

Figure 2 shows how patterns, event classes and rules reach a

level of saturated coverage over time. In case of the SCADA

system, the stable values are 11-13 patterns per log line, 7-9

event classes per line and > 5 rules per line. In this setting

we reach a throughput of 1.200 lines/sec on a standard PC.

VI. CONCLUSION AND FUTURE WORK

In this paper we demonstrated a novel system to detect

unforeseen security incidents, possibly caused by advanced

persistent threats. In contrast to existing security solutions,

including IDSs and SIEMs, our approach is able to automat-

ically adapt to arbitrary log file formats, which make them

especially well applicable for (proprietary) industrial solutions.

Furthermore, patterns and signatures are not predefined, but

are selected by the system based on their statistical relevance.

This approach is promising for SCADA systems and commu-

nication networks with rather static usage behavior, and thus

specifically valuable for the smart grid.

Future work deals with the introduction of hypothesis

weights to prioritize system model rules, the correlation of

rules in order to improve the derived operational picture in

case of attacks, and aging models to remove outdated rules.

REFERENCES

[1] C. Tankard, “Advanced persistent threats and how to monitor and deter
them,” Network Security, vol. 2011, no. 8, pp. 16–19, 2011.

[2] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Secu.

& Privacy, vol. 9, no. 3, pp. 49–51, 2011.
[3] P. D. McDaniel and S. E. McLaughlin, “Security and privacy challenges

in the smart grid,” IEEE Secu. & Privacy, vol. 7, no. 3, pp. 75–77, 2009.
[4] H. Khurana, M. Hadley, N. Lu, and D. A. Frincke, “Smart-grid security

issues,” IEEE Security & Privacy, vol. 8, no. 1, pp. 81–85, 2010.
[5] R. Chandia, J. Gonzalez, T. Kilpatrick, M. Papa, and S. Shenoi, “Security

strategies for scada networks,” in Critical Infrastructure Protection,
2007, pp. 117–131.

[6] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, pp. 1–58, July 2009.

[7] P. Garcia-Teodoro et al., “Anomaly-based network intrusion detection:
Techniques, systems and challenges,” Computers & Security, vol. 28,
no. 1-2, pp. 18–28, 2009.

[8] S. Y. Lee, W. L. Low, and P. Y. Wong, “Learning fingerprints for a
database intrusion detection system,” in ESORICS, 2002, pp. 264–280.

[9] M. Workman, “Gaining access with social engineering: An empirical
study of the threat,” Inf. Syst. Sec., vol. 16, no. 6, pp. 315–331, 2007.

[10] J. D. Hamilton, Time Series Analysis. Princeton University Press, 1994.


