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ZUSAMMENFASSUNG 

Die in Privathaushalten vorhandenen flexiblen Komponenten wie Wärmepumpen, Warm-

wasserspeicher, Batteriespeicher sowie an der Ladestation angeschlossene Elektroautos, 

können durch geeignete Optimierung dazu verwendet werden, das Stromnetz zu stabili-

sieren, Kosten zu senken und dabei CO2 einzusparen. 

Im Forschungsprojekt Flex+ wird das Potential untersucht, diese vorhandenen Energie-

mengen auf flexible Art zu nutzen. Um die Komponenten optimal zu verwenden, werden 

ihre physikalischen Eigenschaften, sowie der Einfluss des Strommarktes modelliert. 

Durch das Pooling von mehreren Komponenten, soll sowohl die Teilnahme am Regelener-

giemarkt als auch an Spotmärkten ermöglicht werden. Mittels mathematischer Optimie-

rungstools werden Fahrpläne erstellt, welche das Ziel haben, entweder Kosten oder CO2- 

Ausstoß zu minimieren. Zur Evaluierung des Nutzens werden verschiedene Szenarien 

modelliert und die jeweiligen Kennzahlen mit einem nicht optimierten Referenzszenario 

verglichen. Dabei werden die Teilnahme an Primär, -Sekundär und Tertiärregelmarkt, so-

wie Day-Ahead-Markt und Intradaymarkt untersucht. Außerdem wurde auch die mögliche 

Reduktion von CO2 untersucht. 

Zur Umsetzung des Pooling-Konzeptes wird im Rahmen des Projektes die sogenannte 

Flex+-Plattform umgesetzt, welche alle Daten für die Realisierung der Optimierung aller 

Pools, sowie Abrufsignale aggregiert und weiterleitet.  

Dieses Deliverable beschreibt die betrachteten Use-Cases, die herangezogenen Optimie-

rungsmethoden, die Modellierung der Komponenten unter Berücksichtigung der verschie-

denen Strommärkte, und die Ergebnisse dieser Optimierungen. Anschließend wird auch 

noch auf die Umsetzung eingegangen, indem die Aktivierung, Fallbackszenarios der ver-

schiedenen Komponenten im Falle eines Verbindungsabbruches zur Flex+-Plattform und 

die herangezogene Baseline als Aktivierungsnachweis beschrieben wird.   

Bei allen Pools lassen sich die größten Einsparungen, welche zwischen 15-20% liegen, 

am Sekundärregelenergie-Markt erzielen. Dies liegt unter anderem an den reduzierten 

Netzkosten beim Bezug von negativer Regelleistung. Die Teilnahme am Tertiärregelener-

giemarkt bringt nur geringe Mehrerlöse im Vergleich zur reinen Preis-Optimierung über 

den Day-Ahead Spotmarkt. Für die Umsetzung wurde ein ausführliches Ablaufkonzept 

vorgestellt, weiters auch Vorschläge für die Baseline der einzelnen Komponenten, einem 

Nachweis für die Aktivierung zum Zeitpunkt der Erbringung. Außerdem wurden auch 

komponentenspezifische Fallback-Szenarien für den Fall eines Verbindungsabbruches mit 

der Flex+-Plattform erstellt. 
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ID Intra Day (Markt) 
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1 Einleitung 

Um die Klimaziele 2030 zu erfüllen, wird in Europa der Ausbau erneuerbarer Energieträ-

ger stark vorangetrieben. Durch die hohe Abhängigkeit von Umwelteinflüssen, führt u.a. 

der Einsatz nachhaltiger Technologien wie beispielsweise Windenergie und Photovoltaik 

jedoch zu vermehrten Schwankungen im Stromnetz. Diese Problematik erfordert bei 

gleichzeitigem Rückbau von thermischen Kraftwerken, den Einsatz von Speicherkapazitä-

ten, welche nicht benötigte Energie bei einem Überschuss aufnehmen, und bei einem 

Mangel wieder abgeben können. Diese Kapazitäten sind in den Haushalten vieler Endkun-

dInnen bereits zu finden, in Form von Elektroautos und Batteriespeichern. Auch Wärme-

pumpen und Elektroboiler können zu einer Lastverschiebung beitragen, indem sie die 

überschüssigen Energiemengen bei Bedarf aufnehmen, bzw. bei Lastüberschuss zurück-

geregelt werden können. Werden mehrere dieser Komponenten zu sogenannten Pools 

verbunden, kann die entstehende Flexibilität verwendet werden, um an verschiedenen 

Strommärkten teilzunehmen und somit Schwankungen in der Erzeugung und des Ver-

brauchs durch Einspeisung und Abgabe von Energie auszugleichen. 

Indem die durch das Pooling und die elektrische und thermische Speicherfähigkeit resul-

tierende Flexibilität durch Preissignale verschiedener Elektrizitätsmärkte genutzt wird, um 

den Zeitpunkt der Last zu verschieben, kommt es zu möglichen Kosteneinsparungen für 

EndkundInnen. Außerdem besteht die Möglichkeit, die Flexibilität in Hinsicht auf über den 

Tag variierende CO2- Emissionen zu nutzen, welche durch den unterschiedlichen Strom-

mix zu jedem Zeitpunkt entsteht, und so zu einem geringeren Ausstoß des Treibhausga-

ses führt. Der führt. Der finanzielle Mehrwert, sowohl auf Aggregator- als auch Kunden-

seite ist notwendig, um Pooling-Konzepte umsetzen zu können. Im Rahmen des For-

schungsprojektes Flex+ wird das Potential von diesen Komponentenpools zur Netzstabili-

sierung und Ertragsmaximierung durch Teilnahme am Day-Ahead- und Regelenergie-

markt untersucht. Die flächendeckende Nutzung der Flexibilität von Haushalten kann zur 

Dekarbonisierung und zu einem weiteren stabilen Stromnetz beitragen. Im Rahmen des 

Projektes Flex+ werden folgende Pools untersucht: Wärmepumpen, Boiler, E-Autos, Bat-

teriespeicher, Energiemanagementsystem. 

Dieses Deliverable beschreibt die Modellierungsansätze, um herauszufinden unter wel-

chen Voraussetzungen das Pooling einen sowohl wirtschaftlich, als auch ökologisch vor-

teilhafteren Betrieb ermöglichen kann. Es werden verschiedene Use-Cases untersucht, 

beschrieben, und deren Kosten evaluiert und verglichen. Im Anschluss an die Simulati-

onsergebnisse werden die Umsetzungskonzepte der verschiedenen Use-Cases beschrie-

ben.   
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2 Use Cases und Annahmen 

Nachfolgend werden die verschiedenen in den Simulationen behandelten Szenarien inklu-

sive ihrer Annahmen beschrieben. Alle Szenarien werden für zwei verschiedene Zeit-

räume betrachtet. Zeitraum 1 (01.10.2017 – 30.09.2018) befindet sich zeitlich vor der 

Markttrennung Österreich-Deutschland im Oktober 2018, Zeitraum 2 (01.11.2018 – 

30.06.2019) danach. Die Simulationen für den Use Case „DA+ID“ wurde für die zwei Wo-

chen von 6.1.2020 – 20.1.2020, Zeitraum 3, ausgeführt. Alle Simulationen finden in 15-

Minuten-Auflösung statt. 

2.1 Referenzszenario 

Um die optimale Vergleichbarkeit zu gewährleisten, wird ein Referenzszenario mit einem 

konstanten Endkundenstromtarif simuliert. Ziel dabei ist es, die Speichergrenzen der ver-

schiedenen Technologien einzuhalten, ohne den Zeitpunkt des Einkaufs durch die Ausnut-

zung günstigerer Preise zu beachten. Dadurch ergibt sich ein technisch idealer Fahrplan 

mit der Minimierung des Energieverbrauchs, da durch den Einkauf zum letztmöglichen 

Zeitpunkt die Verluste minimiert werden. So entsteht ein technisch optimaler Fahrplan. 

Anschließend wird dieser Fahrplan mit den echten Strompreisen der Börse EPEX zu den 

jeweiligen Zeitpunkten bewertet, um realistische Vergleichskosten zu erhalten. Bei den 

Batterien muss als Referenzfall der herstellerspezifische Betriebsmodus zur Eigenbedarfs-

maximierung herangezogen werden, da unter den gegebenen Annahmen der technisch 

optimale Fall eine Nichtbenützung der Batterie zur Folge hätte.  

2.2 DA 

In diesem Szenario wird allein nach dem variierenden EPEX-Spotpreis am Day-Ahead-

Markt optimiert und eingekauft. Die Energie wird also zu den preisgünstigen Zeiten bezo-

gen und der Bezug zu Zeiten mit teureren Preisen vermieden. Die Zielfunktion setzt sich 

aus den Kosten durch den Einkauf am Day-Ahead-Markt und den entstehenden Netzent-

gelten zusammen. 

2.3 PRL + DA + ID 

Obwohl Primärregelleistung derzeit nur als 12h Produkt angeboten wird, werden auf-

grund der bevorstehenden Marktänderung1 4h-Produkte in kalendertäglicher Ausschrei-

bung angenommen. Preise, Abrufwahrscheinlichkeiten und Prognosen liegen ebenfalls in 

dieser Auflösung vor. Die am Markt handelbaren Produkte sind nur symmetrisch verfüg-

bar, das heißt es muss gleichzeitig sowohl positive, als auch negative Regelenergie ange-

boten werden. Eine Aufteilung zwischen positiver und negativer Primärregelleistung auf 

verschiedene Pools wäre zwar in der Praxis möglich, die faire Abrechnung der Kosten und 

Erlöse auf die verschiedenen Pools würde aber eine Herausforderung darstellen. Aufgrund 

weiterer Hürden wie Präqualifikation der Komponenten für diesen Use-Case, wird dieser 

nur für den Batteriepool untersucht, da die Batteriespeicher problemlos zwischen Leis-

tungsbezug und Einspeisung wechseln können. Außerdem werden die Wirkungsgrade bei 

Netting von sowohl positiven als auch negativen Abrufen innerhalb einer Viertelstunde 

vernachlässigt.  

Der Day-Ahead-Fahrplan wird parallel zum Primärregelangebot erstellt. Intradayhandel 

findet nur zur Bewertung des Nachkaufs von Energie statt, der Nachkauf findet dabei je-

weils eine Stunde nach der Prognoseabweichung statt und es werden ID3-Preise dafür 

verwendet. Die Aktivierung wird basierend auf den tatsächlichen historischen Abrufen, 

welche aus den Frequenzwerten berechnet werden, simuliert. 

                                           

1 https://www.e-control.at/fragen-und-antworten-zur-deutsch-osterreichischen-strom-

preiszone 
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2.4 SRL +DA + ID 

Zur Erstellung des Fahrplanes für dieses Szenario wird der Day-Ahead-Einkauf zeitgleich 

mit den Regelenergieangeboten optimiert. Für den Day-Ahead-Markt werden dabei die 

variierenden EPEX-Spotpreise verwendet. Der Einkauf/das Angebot von Sekundärre-

gelenergie erfolgt auf Basis von 4h-Produkten. Die Optimierung findet in 15-Minuten-Auf-

lösung statt, Preise, Abrufwahrscheinlichkeiten und Prognosen liegen ebenfalls in dieser 

Auflösung vor. Der Handel am Regelenergiemarkt bringt Einkünfte durch den Leistungs-

preis, welcher von der Höhe des Angebotes abhängig ist, als auch einen Arbeitspreis, 

welcher für den tatsächlichen Abruf vergütet wird. Da der Pool die angebotene Leistung 

konstant erbringen können muss, wird das Leistungsangebot unter den einzelnen Kom-

ponenten zeitlich aufgeteilt.  

Es gibt negative Produkte, was im Falle eines Abrufes Bezug von Energie bedeutet, und 

positive Produkte, was im Falle eines Abrufes Einspeisung ins Netz, beziehungsweise eine 

Verminderung der bezogenen Leistung relativ zum Day-Ahead-Fahrplan bedeutet. Mit 

Ausnahme der Batteriespeicher kann positive Regelleistung nur dann erbracht werden, 

wenn zum selben Zeitpunkt bereits eine gewisse Day-Ahead-Menge eingekauft wurde. Es 

sind Prognosen für die Wahrscheinlichkeit, mit der man abgerufen wird, verfügbar und es 

wird mit diesen Abrufwahrscheinlichkeiten und den entsprechenden erwarteten Erlösen 

gerechnet. Sowohl für positive als auch negative Regelenergieprodukte werden jeweils 

zwei verschiedene Preise an zwei verschiedenen Merit-Order-Listen-Plätzen inklusive der 

zugehörigen Prognosen der Abrufwahrscheinlichkeiten verwendet. Die zu minimierende 

Zielfunktion ist eine Kostenfunktion, welche sich aus der Summe der viertelstündlichen 

Kosten für den Kauf am Day-Ahead-Markt, den Netzkosten, welche für Strombezug zu 

zahlen sind, den Erlösen am Regelenergiemarkt (Frequency Restoration Reserve, FRR), 

sowie den damit verbundenen reduzierten Netzentgelten zusammensetzt.   

𝐾𝑜𝑠𝑡𝑒𝑛[𝑡] =∑𝐷𝐴𝐾𝑜𝑠𝑡𝑒𝑛[𝑡] + 𝑁𝑒𝑡𝑧𝑒𝑛𝑡𝑔𝑒𝑙𝑡𝑒[𝑡] − 𝐸𝑟𝑙ö𝑠𝑒𝐹𝑅𝑅 [𝑡]

𝑇

𝑡=1

 

𝐷𝐴𝐾𝑜𝑠𝑡𝑒𝑛[𝑡] …𝐾𝑜𝑠𝑡𝑒𝑛 𝑑𝑢𝑟𝑐ℎ 𝑑𝑒𝑛 𝐸𝑖𝑛𝑘𝑎𝑢𝑓 𝑎𝑚 𝐷𝑎𝑦 − 𝐴ℎ𝑒𝑎𝑑 − 𝑀𝑎𝑟𝑘𝑡 𝑖𝑚 𝑍𝑒𝑖𝑡𝑠𝑐ℎ𝑟𝑖𝑡𝑡 𝑡 

𝑁𝑒𝑡𝑧𝑒𝑛𝑡𝑔𝑒𝑙𝑡𝑒[𝑡]… 𝑑𝑢𝑟𝑐ℎ 𝑑𝑒𝑛 𝐵𝑒𝑧𝑢𝑔 𝑎𝑛𝑓𝑎𝑙𝑙𝑒𝑛𝑑𝑒 𝑁𝑒𝑡𝑧𝑒𝑛𝑡𝑔𝑒𝑙𝑡𝑒 𝑖𝑚 𝑍𝑒𝑖𝑡𝑠𝑐ℎ𝑟𝑖𝑡𝑡 𝑡 

𝐸𝑟𝑙ö𝑠𝑒𝐹𝑅𝑅 [𝑡]…𝑤𝑎ℎ𝑟𝑠𝑐ℎ𝑒𝑖𝑛𝑙𝑖𝑐ℎ𝑠𝑡𝑒 𝐸𝑟𝑙ö𝑠𝑒 𝑎𝑚 𝑅𝑒𝑔𝑒𝑙𝑒𝑛𝑒𝑟𝑔𝑖𝑒𝑚𝑎𝑟𝑘𝑡 𝑖𝑚 𝑍𝑒𝑖𝑡𝑠𝑐ℎ𝑟𝑖𝑡𝑡 𝑡 

 

Da die tatsächlichen Abrufe von den prognostizierten Abrufwahrscheinlichkeiten abwei-

chen, wurde angenommen, dass stündlich Energie am Intraday-Markt nachgekauft wer-

den kann. Somit muss der Energieinhalt des Pools nur ausreichen, um eine Stunde 

durchgehend die volle angeforderte Regelleistung zu erbringen (siehe Abbildung 1). Der 

wahrscheinlichste Fall besteht aus der Summe der eingekauften Day-Ahead-Menge zu-

züglich der Summe von erwarteter abgerufener Regelenergie in beide Richtungen. Für 

den Fall, dass die tatsächlich abgerufene Menge abweicht, muss im nächsten Zeitschritt 

nachgekauft werden, um zum erwarteten Speicherstand zurückkehren zu können. Auf die 

Optimierung des Fahrplanes wirkt sich dies so auf die Randbedingungen aus, dass die 

Temperatur der beiden Extremszenarien jeweils wieder zum wahrscheinlichsten Fall zu-

rückgesetzt wird. Um den Nachkauf zu ermöglichen, müssen allerdings die entsprechen-

den Leistungsmengen vorgehalten werden, um in keinem Fall die Randbedingungen zu 

verletzen.  

Die Abrufe werden nach der Optimierung mit realen Abrufen ausgewertet. Intradayhan-

del wird nur zur Bewertung des Nachkaufs von Energie simuliert, der Nachkauf findet da-

bei auf Stundenbasis statt und es werden ID3-Preise dafür verwendet. Anschließend wer-

den die tatsächlichen Aktivierungen basierend auf der APG Balancing Statistic simuliert. 

Prognosefehler der Abrufwahrscheinlichkeiten sind somit miteinbezogen. Prognosefehler 

hinsichtlich Wetter, Erzeugung und Nutzerverhalten wurden bei dieser Bewertung nicht 

betrachtet. 

 



Deliverable Nr. D.9 | Beschreibung der Algorithmen und Bewertung der Skalierbarkeit 14 

 

Abbildung 1 Die grüne Kurve zeigt den unter den vorhandenen Prognosen wahrschein-
lichsten Temperaturverlauf im Gebäude bzw. im Speicher. Wird die volle negative Re-
gelenergiemenge abgerufen steigt die Temperatur stärker an, als erwartet (rote Linie). 

Würde man den Fahrplan wie gehabt weiterverfolgen, könnte es passieren, dass die 
obere Temperaturgrenze überschritten wird. Daher muss die rot schraffierte Energie-
menge im nächsten Zeitschritt wiederverkauft werden, um zur ursprünglich für diesen 
Zeitpunkt vorgesehenen Temperatur zurückzukehren. 

 

 

 

 

Abbildung 2 Negative Regelenergie wird angeboten, aber nichts abgerufen. Im zweiten 
Zeitschritt, sieht man, welche Menge an Leistung für diesen Fall freigehalten werden 
muss, um diese Menge zusätzlich einzukaufen.  
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Abbildung 3 Negative Regelenergie wurde angeboten und vollständig aberufen. Die 
Differenz zum wahrscheinlichsten Abruf, muss im nächsten Zeitschritt für einen 
Nachkauf berücksichtigt werden. 

In Abbildung 2 wird der Fall dargestellt, bei dem negative Regelleistung angeboten, aber 

nichts davon abgerufen wird. Durch die Verwendung der Abrufwahrscheinlichkeit wird an-

genommen, dass ein gewisser Teil der angebotenen Menge abgerufen wird. Dies tritt in 

diesem Beispiel allerdings nicht ein und führt somit zu einer Absenkung des Speicher-

standes. Folglich muss diese nicht abgerufene Energiemenge im nächsten Zeitschritt 

nachgekauft werden können, und diese Leistungserhöhung auch technisch möglich sein. 

Das bedeutet, dass die Komponente von vornherein in diesem Zeitschritt nicht die maxi-

mal technisch mögliche Leistung konsumieren darf. Außerdem muss im Falle eines tota-

len Abrufes (Abbildung 3) die überschüssige Energiemenge verkauft werden können, d.h. 

die Leistung muss um diese Differenz zum erwarteten Fall abgesenkt werden können, die 

entsprechende Energiemenge muss am Day-Ahead-Markt schon eingekauft worden sein. 

Der Intradaynachkauf wird nachträglich simuliert. Wird im vorhergehenden Zeitschritt 

nichts abgerufen, entstehen weniger Gewinne als erwartet durch den verminderten 

abeitspreisabhängigen Erlös. Durch die Differenz vom tatsächlichen Abruf zum erwarte-

ten Abruf, müssen für die nicht abgerufene Menge auch weniger (reduzierte) Netzent-

gelte bezahlt werden. Für den anfallenden Nachkauf müssen dann allerdings wieder zu-

sätzliche (nicht-reduzierte) Netzentgelte bezahlt werden, und die Differenzmenge am Int-

radaymarkt nachgekauft werden. Im Falle von negativer Regelenergie entsteht bei vol-

lem Abruf mehr Gewinn als erwartet, man zahlt mehr reduzierte Netzkosten, dafür kann 

man im nächsten Zeitschritt die zuviel bezogene Energie am Intradaymarkt verkaufen, 

man macht also doppelten Gewinn. Im Falle von negativer Regelenergie profitiert man 

daher zusätzlich von den reduzierten Netzkosten, was bei positiver Regelenergie nicht 

der Fall ist.  

2.5 TRL + DA + ID 

Siehe auch „SRL + DA + ID“. 

Zwischen Sekundär- und Tertiärregelenergie besteht im Modell kein Unterschied, nur die 

Preise und die damit verbundenen Erlösmöglichkeiten sind anders.  

Da bei Tertiärregelenergie die Abrufwahrscheinlichkeiten historisch sehr gering sind, wird 

diese für die Berechnungen als Null angenommen. Dadurch rechnet das Optimierungstool 

nur mit Erlösen durch den Leistungspreis, aber nicht mit Erlösen durch Energiepreise und 

auch nicht mit Erlösen durch reduzierte Netzentgelte. Das insgesamte Erlöspotential ist 

daher bei TRL geringer als bei SRL. 
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2.6 DA + ID 

In diesem Use-Case wird im Gegensatz zu den anderen, der Intraday-Nachkauf ebenfalls 

optimiert, und nicht nur bei Bedarf jede Stunde nachgekauft. Die Optimierung erfolgt 

stündlich für die jeweils nächsten 24h. So können kurzfristige Preisschwankungen ausge-

nutzt werden. Jede Stunde werden veränderte Intraday Bid- und Ask-Preise für jeweils 

die nachfolgenden 3h, in viertelstündlicher Auflösung, zur Verfügung gestellt. Nach die-

sen 3h wird für die Optimierung der Day-Ahead-Preis als Intraday-Preis-Forecast verwen-

det. Es werden nur die Trades für die nächsten 3h (zu den jeweiligen Bid/Ask-Preisen) 

tatsächlich getätigt und entsprechend gespeichert. D.h. der Fahrplan für eine Stunde ist 

die Summe aus dem Day-Ahead-Fahrplan und den drei Intraday-Fahrplänen aus den Op-

timierungen der drei Stunden davor. Der neue Day-Ahead-Fahrplan für den nächsten Tag 

wird täglich um 14:00 erstellt.   
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3 Batterie-Pool Optimierung 

3.1 Methode 

Die für die Batterie-Pool-Optimierung verwendete Methodik basiert auf drei Hauptelemen-

ten, nämlich a) Flexibilitätspotenzial, b) simulationsbasierte Optimierung und c) Aktivie-

rungsfaktor. Das erste Element, das Flexibilitätspotenzial, ermöglicht es, die Flexibilitäts-

optimierung vom Referenzbetrieb der Batterie zu trennen. Es ermöglicht auch die Durch-

führung der Optimierung über eine Gruppe von Batterien unter Verwendung des gesamten 

Flexibilitätspotenzials. Das zweite Element, die simulationsbasierte Optimierung, ermög-

licht die synchrone Optimierung über mehrere Märkte hinweg, ohne die Komplexität der 

Optimierung zu erhöhen. Das dritte Element, der Aktivierungsfaktor, ermöglicht es, die 

Kosten für die Nutzung der Batterien unter Berücksichtigung ihrer Lebenserwartung effi-

zient einzubeziehen. 

3.1.1 Rahmen und Definitionen 

Die Zeit wird in Intervalle eingeteilt, die durch 𝛥𝑇 bezeichnet werden, was die Granularität 

definiert, mit der Messungen gesammelt und Entscheidungen über den Betrieb jeder Bat-

terie und des Batteriepools getroffen werden. Wir gehen davon aus, dass 𝛥𝑇 = 1/4ℎ ist, was 

bedeutet, dass jeder Tag in 𝑁 = 96  Zeitintervalle unterteilt ist. In mehreren Fällen werden 

wir austauschbar die Zeitvariable 𝑡 verwenden, um auch den Index des entsprechenden 

Zeitintervalls oder den Beginn eines Zeitintervalls zu bezeichnen. So wird 𝑡 + 1 das nächste 

Zeitintervall bezeichnen. In einigen Fällen können Entscheidungen mit einer größeren Gra-

nularität getroffen werden (z.B. in 4-Stunden-Intervallen in RE-Märkten). Aber auch in 

solchen Fällen wird die Umsetzung immer gleichmäßig in die feinere Granularität von 𝛥𝑇 

verteilt. 

Wir erhalten einen Satz 𝐼 ≝ {1,2, … , 𝑛} von Haushalten, die mit Photovoltaik (PV)-Panelen 

und einer Batterie ausgestattet sind. Lassen Sie uns 𝑖 auch als ein repräsentatives Element 

dieser Menge bezeichnen. Zu jedem gegebenen Zeitintervall 𝑡 kann jeder dieser Haushalte 

durch die von den PV-Panelen erzeugte elektrische Leistung 𝑃𝑃𝑉,𝑖(𝑡), die von den Benut-

zern/Bewohnern im Haushalt verbrauchte elektrische Leistung 𝑃𝑙𝑜𝑎𝑑,𝑖(𝑡),  und den Ladezu-

stand 𝑆𝑂𝐶𝑖(𝑡) der Batterie charakterisiert werden.  

Aufgrund der geringen Dauer dieser Zeitintervalle (15min) werden alle Leistungsvariablen 

(wie z.B. 𝑃𝑃𝑉,𝑖(𝑡) and 𝑃𝑙𝑜𝑎𝑑,𝑖(𝑡)) immer auf den entsprechenden Mittelwert über das aktuelle 

Zeitintervall 𝑡 normiert. Somit nehmen 𝑃𝑃𝑉,𝑖(𝑡) and 𝑃𝑙𝑜𝑎𝑑,𝑖(𝑡)  einen konstanten Wert über 

das Zeitintervall 𝑡 an (entspricht dem Mittelwert über das Zeitintervall 𝛥𝑇). Auf der anderen 

Seite wird jede Energievariable, z.B. 𝐸𝑃𝑉(𝑡) = 𝑃𝑃𝑉,𝑖(𝑡) 𝛥𝑇, die gesamte während des Zeitin-

tervalls 𝑡 ausgetauschte Energie bezeichnen. Schließlich wird der Ladezustand 𝑆𝑂𝐶𝑖(𝑡) dem 

Ladezustand zu Beginn des Zeitintervalls 𝑡 entsprechen. 

In einigen Fällen werden wir auch die Notation 𝛥𝑃𝑖(𝑡) ≝ 𝑃𝑃𝑉,𝑖(𝑡) − 𝑃𝑙𝑜𝑎𝑑,𝑖(𝑡)  verwenden, um 

die überschüssige Energie (die positiv oder negativ sein kann) zu bezeichnen. Lassen Sie 

uns auch 𝑃𝑔,𝑖(𝑡) als die vom Netz im Zeitintervall 𝑡 empfangene Leistung bezeichnen und 

𝑃𝑏,𝑖(𝑡) als die Leistung, die im Zeitintervall 𝑡 zur Batterie fließt (ohne Lade-/Entladeverluste). 

Zu jedem gegebenen Zeitpunkt 𝑡 bestimmt die Leistungsbilanz im Haushalt, dass 

𝑃𝑔,𝑖(𝑡) = 𝑃𝑏,𝑖(𝑡) − 𝛥𝑃𝑖(𝑡) 

Referenz-Batteriebetrieb. Jede der teilnehmenden Batterien ist mit einem eigenen (lo-

gischen) Controller ausgestattet, der Autarkie als Hauptziel betrachtet. Nach einem solchen 

Referenzregler wird a) wenn 𝛥𝑃𝑖(𝑡) > 0, (d.h. die Stromerzeugung größer als der Lastver-

brauch ist), die überschüssige PV-Stromproduktion zunächst zum Laden der Batterie ver-

wendet und der verbleibende Rest ins Netz eingespeist, und b) wenn 𝛥𝑃𝑖(𝑡) ≤ 0, (d.h. die 

PV-Stromproduktion kleiner als der Lastverbrauch ist), der Lastverbrauch zunächst von der 

Batterie gedeckt, und wenn er nicht ausreicht, wird er vom Netz bezogen. 

Tabelle 1 Referenzleistung der Batterie 
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Zu Beginn jedes Zeitintervalls 𝑡 und unter Berücksichtigung des Ladezustands der Batterie 

𝑖 zu Beginn dieses Intervalls, 𝑆𝑂𝐶𝑖(𝑡),  sowie der aktuellen Überschussleistung 𝛥𝑃𝑖(𝑡), kön-

nen wir die Referenzleistung für die Batterie berechnen (d.h. die Leistung der Batterie unter 

dem auf der Referenzautarkie basierenden Regler). Hierbei handelt es sich um eine einfa-

che Berechnung, die auf mehreren Merkmalen der Batterie basiert (wie z.B. die maximalen 

Lade-/Entladeverlustraten der Batterie). Die Einzelheiten einer solchen Berechnung sind in 

der folgenden Referenz (Chasparis, Pichler, Spreitzhofer, & Esterl, A cooperative demand-

response framework for day-ahead optimization in battery pools, 2019) zu finden und in 

Tabelle 1 aufgeführt. 
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Ausgehend von der Referenzleistung für die Batterie im Zeitintervall 𝑡, 𝑃𝑏,𝑟𝑒𝑓,𝑖(𝑡), können 

wir die Referenzleistung aus dem Netz im Zeitintervall 𝑡, 𝑃𝑏,𝑟𝑒𝑓,𝑖(𝑡), auch wie folgt berech-

nen: 

𝑃𝑔,𝑟𝑒𝑓,𝑖(𝑡) = 𝑃𝑏,𝑟𝑒𝑓,𝑖(𝑡) − 𝛥𝑃𝑖(𝑡) 

Energie-Flexibilitätspotenzial. Der Eckpfeiler unserer Methodik ist der Begriff des Ener-

gieflexibilitätspotenzials. Im Prinzip ist das Lade- und Entladeflexibilitätspotenzial eines 

Haushalts 𝑖 innerhalb eines Zeitintervalls  𝛥𝛵 definiert als die überschüssige Energie (im 

Vergleich zum Referenzszenario), die innerhalb dieses Intervalls in den Haushalt "geladen" 

bzw. aus ihm "entladen" werden kann. Beachten Sie, dass wir das Flexibilitätspotenzial in 

Bezug auf den Haushalt und nicht auf die Batterie definieren, da ein Teil der Flexibilität 

durch einfaches Blockieren der Batterie entstehen kann. In einigen Fällen werden wir das 

Ladepotenzial als "negative Flexibilität" bezeichnen (da es der aus dem Netz entnommenen 

Energie entspricht) und das Entladepotenzial als "positive Flexibilität" (da es der in das 

Netz eingespeisten Energie entspricht). Der folgende Algorithmus 2 der Tabelle 2 be-

schreibt, wie das Potential berechnet wird. 

Tabelle 2 Flexibilitätspotenzial 

 

Nach Algorithmus 2 der Tabelle 2 wird das Ladepotenzial als positive Differenz zwischen 

der maximal möglichen Energie, die von der Bezugsenergie in die Batterie geladen werden 

könnte, und der Referenzenergie in die Batterie berechnet. Beachten Sie, dass diese Be-

rechnung, obwohl sie sich ausschließlich auf Batterieparameter stützt, das Gesamtpoten-

zial für den Haushalt berechnet. Wenn die Batterie z.B. gegenwärtig geladen wird, d.h. 

𝑃𝑏,𝑟𝑒𝑓,𝑖(𝑡) > 0, was impliziert, dass es eine überschüssige PV-Energieerzeugung gibt 𝛥𝑃𝑖(𝑡) >

0, dann erreichen wir durch Blockieren der Batterie ein Entladungsflexibilitätspotenzial 

𝑣𝑑,𝑖(𝑡) < 0. Wenn die Batterie andererseits gegenwärtig entladen wird, d.h, 𝑃𝑏,𝑟𝑒𝑓,𝑖(𝑡) < 0, was 

bedeutet, dass im Haushalt ein Strommangel herrscht, 𝛥𝑃𝑖(𝑡) < 0, dann erreichen wir durch 

Blockieren der Batterie ein Entlade-Flexibilitätspotential 𝑣𝑐,𝑖(𝑡) > 0. 

Um die Begriffe des Flexibilitätspotenzials beim Laden/Entladen besser zu verstehen, be-

trachten wir das schematische Profil einer Batterie 𝑖 in Abbildung 4 unter 𝑆𝑂𝐶𝑖(𝑡). In der 

linken Seite der Abbildung sehen wir, dass 𝛥𝑃𝑖(𝑡) > 0. Als Ergebnis sollten wir erwarten, 

dass die Batterie geladen wird und 𝑃𝑏,𝑟𝑒𝑓,𝑖(𝑡) > 0. Die Energie, die aufgrund des Referenz-

reglers in die Batterie geladen wird, wurde mit dem gelb schattierten Bereich hervorgeho-

ben. Dies bedeutet, dass das verfügbare Ladepotenzial in diesem Intervall der verbleibende 

grün schattierte Bereich ist. Andererseits entspricht die positive überschüssige Energie 

𝛥𝑃𝑖(𝑡) zusammen mit der der Batterie zur Verfügung stehenden Energie (rot schraffierter 

Bereich) dem Entlade-Flexibilitätspotenzial. 
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Abbildung 4 Schema des Lade- und Entladepotentials 

Energiezuschläge und Optimierungsvariablen. In jedem Zeitintervall 𝛥𝛵 sind wir da-

ran interessiert, den Anteil des verfügbaren Flexibilitätspotenzials zu berechnen, der auf 

einem Strommarkt gehandelt werden kann (DA/ID/RE). Zu diesem Zweck führen wir den 

Parameter 𝑢𝑖(𝑡) ∈ [−1,1] ein, der die Aktivierung von Haushalt 𝑖 im Zeitintervall 𝑡 repräsen-

tiert. Wenn 𝑢𝑖(𝑡) ≥ 0, dann repräsentiert |𝑢𝑖(𝑡)| den Anteil des Ladeflexibilitätspotenzials, 

der von diesem Haushalt 𝑖 genutzt wird. Analog dazu, wenn 𝑢𝑖(𝑡) ≤ 0, dann repräsentiert 
|𝑢𝑖(𝑡)| den Anteil des Entladungsflexibilitätspotenzials, der von Haushalt 𝑖 genutzt wird. Mit 

anderen Worten, wenn 𝑢𝑖(𝑡) ≥ 0, dann repräsentiert 𝑒𝑖(𝑡) = 𝑢𝑖(𝑡)𝑣𝑐,𝑖(𝑡) ≥ 0 die Energie, die 

von Haushalt 𝑖 aktiviert wird. Wenn andererseits 𝑢𝑖(𝑡) ≤ 0, dann ist 𝑒𝑖(𝑡) = −𝑢𝑖(𝑡)𝑣𝑑,𝑖(𝑡) ≤ 0 

die Energie, die von Haushalt 𝑖 abgegeben wird. Aus der Perspektive des Haushalts 𝑖 ist 
dies eine negative Aktivierung.   

Update des Ladezustands und Systemdynamik.  

Bei einer Entscheidung über die Aktivierung 𝑢𝑖(𝑡) der Batterie 𝑖 im Zeitintervall 𝑡 wird der 

Ladezustand der Batterie 𝑖 zu Beginn des nächsten Zeitintervalls 𝑡 + 1 sowohl durch 𝛥𝑃𝑖(𝑡)  
als auch durch die Aktivierung 𝑢𝑖(𝑡) beeinflusst. Der folgende Algorithmus 3 der Tabelle 3 

beschreibt die genaue Berechnung von 𝑆𝑂𝐶𝑖(𝑡 + 1). 

Im Wesentlichen liefert Algorithmus 3 der Tabelle 3 die Systemdynamik, d.h. wie der La-

dezustand der Batterie unter Verwendung des vorherigen Ladezustands und der Aktivie-

rungsentscheidungen des aktuellen Zeitintervalls berechnet wird. Eine schematische Dar-

stellung dieser Systemdynamik ist auch in Abbildung 5 enthalten. Insbesondere ist die 

Beschreibung der Dynamik in zwei Teile gegliedert: a) der erste Teil (unten) entspricht der 

tatsächlichen Dynamik (unter der Annahme, dass der Wert von 𝛥𝑃𝑖(𝑡) vollkommen bekannt 

ist), b) der zweite Teil (oben) entspricht der prognostizierten Dynamik (die der auf Prog-

nosen basierenden Dynamik 𝛥𝑃̂𝑖(𝑡) entspricht). Mit anderen Worten, der obere Teil (Vor-

hersagedynamik) entspricht der simulierten Dynamik, während der untere Teil der wahren 

(unbekannten) Dynamik des Systems entspricht. 

Es ist wichtig zu beachten, dass Entscheidungen immer im Hinblick auf die Prognosedyna-

mik getroffen werden, da dies die einzige verfügbare Information ist. Der mit 𝐶 bezeichnete 

Regler oder Optimierer nimmt als Eingabe die verfügbaren geschätzten Lade- und Entla-

depotenziale 𝑣̂𝑐,𝑖, 𝑣̂𝑑,𝑖 und liefert als Ausgabe eine Aktivierungsentscheidung. 

Tabelle 3 Aktualisierungsalgorithmus des Ladezustands 
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Abbildung 5 Systemdynamik der Batterie des Haushalts 𝒊 

3.1.2 Optimierungs-Methodik  

Setup. Wir haben die notwendige Terminologie zur Beschreibung des verfügbaren Ener-

giepotenzials in einem Einpersonenhaushalt (𝑣𝑐,𝑖 , 𝑣𝑑,𝑖) eingeführt und die Systemdynamik 

beschrieben, d.h. wie das Flexibilitätspotenzial angesichts der aktuellen Aktivierungen für 
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diesen Haushalt aktualisiert wird. Darüber hinaus haben wir die Optimierungsvariablen 

(Energiezuschläge) eingeführt, d.h. die Energie-/Leistungsmengen, die der Batterie-Pool 

einem Markt anbietet (DA/RE/ID). 

 

 

Abbildung 6 Schema der Flexibilitätspotential-Aggregation  

Wir möchten die Energieverpflichtungen {𝑢(1), 𝑢(2), … , 𝑢(𝑁)} berechnen, die der Batterie-

Pool am nächsten Tag einem Markt anbietet, wobei 𝑢(𝑡), 𝑡 = 1,… , 𝑁, der im Zeitintervall 𝑡 
angebotene Energiezuschlag ist. Jeder dieser Zuschläge, der während des Zeitintervalls 𝑡 
angeboten wird, wird durch eine Teilmenge der teilnehmenden Batterien aktiviert, d.h, 

𝑢(𝑡) = (

𝑢1(𝑡)

𝑢2(𝑡)
⋮

𝑢𝑛(𝑡)

) 

wobei 𝑛 die Gesamtzahl der teilnehmenden Batterien bezeichnet und 𝑢𝑖(𝑡) ∈ [−1,1] der An-

teil des verfügbaren Flexibilitätspotenzials ist, der von der Batterie 𝑖 aktiviert wird, 𝑖 =
1,… , 𝑛. Mit anderen Worten, wir möchten für jede Batterie berechnen, welcher Anteil des 

verfügbaren Lade-/Entladepotenzials innerhalb des Zeitintervalls 𝑡 angeboten werden 

sollte. Schematisch ist dies auch in Abbildung 6 dargestellt, wo die grünen und roten Pfeile 

die von jeder Batterie aktivierte Energiemenge anzeigen. 

Da der Batterie-Pool an drei verschiedenen Typen von Strommärkten teilnehmen kann, 

nämlich EE, DA und ID, müssen wir die Energiezuschläge pro Energiemarkt berechnen. 

Daher führen wir die Notation 𝑢𝑅𝐸(𝑡), 𝑢𝐷𝐴(𝑡), 𝑢𝐼𝐷(𝑡) ein, um die im Zeitintervall 𝑡 auf den RE-

, DA- und ID-Märkten angebotenen Aktivierungen zu bezeichnen. Zu jedem Zeitintervall 𝑡 
und unter der Annahme, dass der Batterie-Pool die Aktivierungen 𝑢𝑅𝐸(𝑡), 𝑢𝐷𝐴(𝑡), 𝑢𝐼𝐷(𝑡) an-

geboten hat, gibt es einen damit verbundenen Nutzen (Einnahmen), die der Batterie-Pool 

erhält. Wenn wir annehmen, dass der Batterie-Pool an RE/DA/ID-Märkten teilnimmt, dann 

könnte der entsprechende Nutzen (während des Zeitintervalls 𝑡) wie folgt geschrieben wer-

den: 

𝑔(𝑥(𝑡), 𝑢𝑅𝐸(𝑡), 𝑢𝐷𝐴(𝑡), 𝑢𝐼𝐷(𝑡)) = 𝑔𝑅𝐸(𝑥(𝑡), 𝑢𝑅𝐸(𝑡)) + 𝑔𝐷𝐴(𝑥(𝑡), 𝑢𝐷𝐴(𝑡)) + 𝑔𝐼𝐷(𝑥(𝑡), 𝑢𝐼𝐷(𝑡)) + 

         𝑔𝑟𝑒𝑓(𝑥(𝑡), 𝑢𝑅𝐸(𝑡), 𝑢𝐷𝐴(𝑡), 𝑢𝐼𝐷(𝑡)) 

wobei 𝑔𝑅𝐸, 𝑔𝐷𝐴, und 𝑔𝐼𝐷 die vom RE-, DA- bzw. ID-Markt erhaltenen Versorgungsleistungen 

bezeichnen. Die Besonderheiten dieser Abschnitte werden in einem späteren Abschnitt im 
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Detail definiert. Die Variable 𝑥 stellt die Zustandsvariable dar und fasst die derzeit verfüg-

baren Informationen über den gesamten Batterie-Pool zusammen. Insbesondere umfasst 

die Zustandsvariable die folgenden Variablen 𝑆𝑂𝐶𝑖(𝑡), 𝑣𝑑,𝑖(𝑡), 𝑣𝑐,𝑖(𝑡) (d.h. den Ladezustand der 

Batterie und das Entlade-/Ladepotenzial der Batterie. 

Der letzte Term der Nutzenfunktion, 𝑔𝑟𝑒𝑓, bezeichnet den Nutzwert, den der Benutzer auf-

grund der Differenz zum Referenzbetrieb der Batterie (Opportunitätskosten) erfährt. Auf-

grund der Energieaktivierungen, die den Strommärkten angeboten werden, erfährt der 

Benutzer einen Unterschied zum Referenzszenario. 

Um die Rolle des Begriffs 𝑔𝑟𝑒𝑓, besser zu verstehen, wollen wir uns das Beispiel von Abbil-

dung 7 ansehen. Aufgrund der (entladenden) Energiezuschläge folgt der Ladezustand ei-

nem anderen Profil, was im Referenzszenario zu anderen Kosten führt. Insbesondere be-

zeichne 𝑃𝑔,𝑟𝑒𝑓,𝑖
𝑎𝑢𝑡𝑜 (𝑡) die Leistung, die im Zeitintervall 𝑡 unter dem autonomen/originalen Refe-

renzszenario, d.h. ohne Energiezuschläge, aus dem Netz bezogen wird, und 𝑃𝑔,𝑟𝑒𝑓,𝑖(𝑡) sei 

die entsprechende Leistung aus dem Netz unter dem neuen Referenzszenario (das unter 

Berücksichtigung der früheren Energiezuschläge berechnet wird). Wenn 𝜆𝐷𝐴(𝑡) den DA-

Strompreis für das Zeitintervall 𝑡 bezeichnet und 𝜏𝐷𝐴 den DA-Netztarif, dann gilt: 

𝑔𝑟𝑒𝑓(𝑥(𝑡), 𝑢𝑅𝐸(𝑡), 𝑢𝐷𝐴(𝑡), 𝑢𝐼𝐷(𝑡)) =  −[𝑃𝑔,𝑟𝑒𝑓,𝑖(𝑡)]+
(𝜆𝐷𝐴(𝑡) + 𝜏𝐷𝐴) 𝛥𝛵 − [𝑃𝑔,𝑟𝑒𝑓,𝑖(𝑡)]−

𝜆𝐷𝐴(𝑡) 𝛥𝛵 +  

                                                                    [𝑃𝑔,𝑟𝑒𝑓,𝑖
𝑎𝑢𝑡𝑜 (𝑡)]

+
(𝜆𝐷𝐴(𝑡) + 𝜏𝐷𝐴) 𝛥𝛵 + [𝑃𝑔,𝑟𝑒𝑓,𝑖

𝑎𝑢𝑡𝑜 (𝑡)]
−
𝜆𝐷𝐴(𝑡) 𝛥𝛵 

was die Differenz der Kosten zwischen den Referenzszenarien des tatsächlichen Betriebs 

(einschließlich der Energiezuschläge) und des autonomen Betriebs (ohne die Energiever-

pflichtungen) berechnet. 

 

Abbildung 7 Langfristige Auswirkungen von Entscheidungen 

Optimierungsproblem.  

Der Batterie-Pool nimmt an einem Strommarkt RE/DA/ID teil, indem er Energie- oder 

Stromgebote über den nächsten Tag (wie im Falle des RE- oder DA-Marktes) oder über die 

nächsten Stunden (wie im Falle des ID-Marktes) anbietet. Zuschläge werden mit einer 

Granularität von 15min (für den DA- oder ID-Markt) oder mit einer Granularität von 4h 

(für die RE-Märkte) entschieden. In den RE- und DA-Märkten sollte die Optimierung also 

einmal pro Tag durchgeführt werden und die Energie-/Leistungszuschläge für den nächsten 
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Tag in einer Granularität von 4 Stunden bzw. 15 Minuten liefern, während für den ID-Markt 

die Optimierung jede einzelne Stunde durchgeführt werden kann, um die Energiezuschläge 

über einige Stunden zu liefern. Darüber hinaus setzt die Optimierung für den DA-Markt 

voraus, dass die akzeptierten Gebote für den RE-Markt bekannt sind, d.h. die DA-

Optimierung folgt der RE-Optimierung. 

Unabhängig vom Strommarkt (RE/DA/ID), dem Optimierungshorizont oder der Granulari-

tät der Energiezuschläge sollten bei der Optimierung die langfristigen Auswirkungen der 

Entscheidungen berücksichtigt werden. In Abbildung 7 haben wir gesehen, dass jede Ener-

giezuschlag später innerhalb desselben Tages oder am nächsten Tag bzw. an den nächsten 

Tagen einen signifikanten Einfluss auf das Referenzszenario haben kann. Beispielsweise 

kann jede Entladungsaktivierung, durch die die Batterie geleert wird, im aktualisierten Re-

ferenzszenario zu erheblich höheren Kosten führen. Obwohl also unsere Optimierungsva-

riablen innerhalb des nächsten Tages eingeschränkt werden, verlängert sich unser effekti-

ver Optimierungshorizont über einen Zeitraum, der größer als ein Tag ist. Mathematisch 

kann dies als ein Optimierungsproblem mit unendlichem Horizont ausgedrückt werden, mit 

einem Ziel (oder Nutzen) der Form: 

𝐽∗(𝑥0) ≝ max
𝑢(0),𝑢(1),… ∈[−1,1]𝑛

∑𝛿𝑡𝑔(𝑥(𝑡), 𝑢𝑅𝐸(𝑡), 𝑢𝐷𝐴(𝑡), 𝑢𝐼𝐷(𝑡))

∞

𝑡=0

,    𝑥(0) = 𝑥0 

für einen Diskontierungsfaktor 𝛿 ∈ (0,1], wobei der Prozess bei Zustand 𝑥(0) = 𝑥0 eingeleitet 

wird. In der Praxis ist es ausreichend, die Auswirkungen der Entscheidungen 𝑢𝑅𝐸(𝑡), 𝑢𝐷𝐴(𝑡), 
𝑢𝐼𝐷(𝑡)  in den nächsten Tagen zu berücksichtigen, in diesem Fall 𝛿 = 1. Beachten Sie, dass 

die Funktion 𝑔 bereits die Differenz mit dem autonomen Referenzszenario erfasst (d.h. 

wenn die Batterie autonom arbeitet). Somit liefert 𝐽∗(𝑥0) die erhaltenen Einnahmen im Ver-

gleich zum Referenzbetrieb der Batterie. 

In den folgenden Unterabschnitten werden wir diskutieren, wie eine solche generische Op-

timierungsformulierung rechnerisch effizient angegangen werden kann, und wir werden sie 

für die verschiedenen Strommärkte oder Kombinationen davon spezialisieren. 

Optimale Strategie und simulationsbasierte Optimierung. Wie wir oben diskutiert 

haben, formulieren wir das Problem als eine Optimierung mit großem Horizont (um die 

langfristigen Auswirkungen unserer Entscheidungen zu erfassen), auch wenn wir nach op-

timalen Energiezuschlägen für einen Tag im Voraus suchen. Solche Optimierungsprobleme 

mit großem Zeithorizont, die auch dynamischen Einschränkungen unterliegen (d.h. die 

Batteriedynamik von Tabelle 3), werden normalerweise im Rahmen der Dynamischen Pro-

grammierung (oder der Approximativen Dynamischen Programmierung bei Unsicherhei-

ten) behandelt. In einfachen Worten, das Hauptziel solcher Methoden ist die Ableitung 

einer optimalen Strategie, d.h. einer Funktion 𝜇∗(𝑥(𝑡)) = 𝑢∗(𝑡), die einen optimalen Energie-

zuschlag für jedes Zeitintervall 𝑡 bei der aktuellen Situation (oder dem aktuellen Zustand) 

𝑥(𝑡) liefert. Wenn eine solche optimale Strategie zur Verfügung steht, können wir die opti-

malen Zuschläge für den nächsten Tag ableiten, indem wir einfach simulieren, wie sich der 

Zustand des Batterie-Pools am nächsten Tag entwickelt, wenn wir in jedem 15-Minuten-

Intervallschritt die optimale Strategie anwenden. 

Insbesondere werden, unter der Annahme, dass eine optimale Strategie verfügbar ist, 

𝜇∗(𝑥(𝑡)) = 𝑢∗(𝑡), die optimalen Aktionen über einen Zeithorizont von 𝑁 Schritten gemäß dem 

Algorithmus 4 aus Tabelle 4 ausgewählt. Der Zeithorizont 𝑁 wird davon abhängen, ob wir 

im Hinblick auf den DA/ID/RE-Markt optimieren. Im Wesentlichen simuliert Algorithmus 4 

einfach die Entwicklung des Ladezustands der Batterie, wenn wir Entscheidungen (über die 

Energiezuschläge für einen Markt) gemäß der optimalen Strategie 𝜇∗ treffen. Die Ableitung 

dieser Strategie hängt von den Merkmalen des jeweiligen Marktes ab und wird in den kom-

menden Abschnitten spezialisiert werden. 

Abschließend sei darauf hingewiesen, dass die Zustandsvariable 𝑥𝑖(𝑡) Informationen zu-

sammenfasst, die derzeit von jedem Haushalt 𝑖 zum Zeitpunkt 𝑡 verfügbar sind. Hier ist sie 

definiert als die Sammlung 𝑥𝑖(𝑡) = {𝑆𝑂𝐶𝑖(𝑡), 𝑣𝑐,𝑖(𝑡), 𝑣𝑑,𝑖(𝑡)}, die den Ladezustand der Batterie 𝑖 

und die verfügbare Lade- und Entladeflexibilität im Haushalt 𝑖 einschließt. Zum Beispiel 
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wird der Zustand der DA-Optimierung auch die Energie-/Leistungszuschläge umfassen, die 

dem RE-Markt angeboten werden. 

Tabelle 4 Optimale Zuschläge, wenn eine optimale Strategie zur Verfügung steht 
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3.1.3 DA/ID Optimierung 

In diesem Abschnitt stellen wir die Gründe für die Berechnung der optimalen Energiezu-

schläge für die DA/ID-Optimierung vor. Wie wir im vorigen Abschnitt beschrieben haben, 

reicht es aus, die optimale Strategie 𝜇∗(𝑥(𝑡)) zu berechnen, auf deren Grundlage die Ener-

giezuschläge im Algorithmus 4 von Tabelle 4 berechnet werden. 

Bevor wir auf die Einzelheiten eingehen, werden wir einige Notationen einführen. Insbe-

sondere definieren wir 𝐿 als den effektiven Prognosehorizont, der für die Ableitung einer 

Strategie erforderlich ist. Der Horizont 𝐿 wird in einer Anzahl von 15-Minuten-Schritten 

gemessen und stellt den zukünftigen Horizont dar, der für die Definition einer optimalen 

(langfristigen) Strategie ausreichend ist. Darüber hinaus definieren wir 𝜓𝑖
𝐿(𝑡) ≥ 0 als die 

Gesamtenergie, die über den Zeithorizont 𝐿 aus dem Netz bezogen wird, wenn die Batterie 

den Standard-Referenzregler verwendet und vom aktuellen Zustand 𝑥𝑖(𝑡) ausgeht. Analog 

definieren wir 𝜑𝑖
𝐿(𝑡) ≤ 0 als die Energie, die über den Zeithorizont 𝐿 schrittweise ins Netz 

eingespeist wird, wenn die Batterie den Standard-Referenzregler verwendet und vom ak-

tuellen Zustand 𝑥𝑖(𝑡) ausgeht. Schliesslich definieren wir 𝜆𝐷𝐴,𝑓(𝑡) und 𝜆𝐼𝐷,𝑓(𝑡) als den durch-

schnittlichen DA- und ID-Preis in den kommenden 𝐿 -Zeitschritten. 

Die Optimierung wird nach dem im vorigen Abschnitt beschriebenen simulationsbasierten 

Ansatz und Algorithmus 4 aus Tabelle 4 durchgeführt. Für den Fall von DA/ID können wir 

Algorithmus 4 weiter spezialisieren, wie im folgenden Algorithmus 5 von Tabelle 5 darge-

stellt. 

Tabelle 5 Optimale DA-Zuschläge 

 

Algorithmus 5 der Tabelle 5 geht davon aus, dass bereits eine optimale Strategie 𝜇𝐷𝐴
∗ (𝑥(𝑡)) 

berechnet wurde, auf deren Grundlage die Ableitung der optimalen Zuschläge 𝑢𝐷𝐴
∗ (𝑡) er-

folgt. Die Strategie wird sowohl für den DA- als auch für den ID-Markt die gleiche sein. Für 

den DA-Markt wird die Richtlinie 𝜇𝐷𝐴
∗ (𝑥(𝑡)) für die Ableitung der optimalen Zuschläge für 

den gesamten nächsten Tag verwendet (durch Simulation der Entscheidungen des nächs-

ten Tages). Für den ID-Markt wird die gleiche optimale Strategie 𝜇𝐷𝐴
∗ (𝑥(𝑡)) zur Ableitung 

des optimalen Zuschlags für die nächste Stunde verwendet. Der einzige Unterschied zwi-

schen dem DA und der ID ist also die Ausführungshäufigkeit (einmal täglich für die DA-

Optimierung und einmal stündlich für die ID-Optimierung) und der Simulationshorizont in 

Algorithmus 5 (ein Tag für die DA-Optimierung und eine Stunde für die ID-Optimierung). 
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Die Granularität der Entscheidungen ist für beide Märkte gleich und entspricht 15-Minuten-

Intervallen. 

Die Variablen 𝜓𝑖
𝐿(𝑡) und 𝜑𝑖

𝐿(𝑡) werden verwendet, um einen Überblick über den Zustand der 

Batterie im kommenden Zeithorizont von 𝐿 Schritten unter dem Standard-Referenzszenario 

zu geben. Insbesondere informieren uns diese Variablen darüber, ob der Haushalt im kom-

menden Zeithorizont Energie beschaffen oder einspeisen wird. Zu diesem Zweck wählen 

wir 𝐿 so aus, dass die Batterie innerhalb der nächsten 𝐿 -Schritte nicht beide Extremwerte 

(voll geladen und leer) erreichen kann. Dies liegt in der Regel im Bereich von 4-5 Stunden, 

wenn wir die Einschränkungen der maximalen Lade-/Entladeleistung zur/von der Batterie 

berücksichtigen. Wenn wir wissen, dass der Haushalt innerhalb der nächsten L-Schritte 

Energie aus dem Netz beziehen wird, d.h. 𝜓𝑖
𝐿(𝑡) < 0, dann können wir diesen Bezug früher 

durchführen, wenn der DA/ID-Preis jetzt niedriger ist. Ähnlich verhält es sich, wenn wir 

wissen, dass der Haushalt Energie in das Netz einspeisen wird, d.h. 𝜑𝑖
𝐿(𝑡) > 0, dann können 

wir die Einspeisung früher durchführen, wenn der DA/ID-Preis jetzt höher ist. In beiden 

Fällen ist die in Form von DA/ID-Energiezuschlägen ausgetauschte Energie nicht größer als 

die im Referenzszenario bereits geplanten Austausche. 

Mathematisch gesehen kann diese Richtlinie wie folgt geschrieben werden, 𝜇𝐷𝐴
∗ ≝

{𝜇𝐷𝐴,𝑖
∗ }

𝑖=1,…,𝑛
, so dass 

𝜇𝐷𝐴,𝑖
∗ (𝑥𝑖(𝑡)) =

{
 
 

 
 
max{𝑣𝑑,𝑖(𝑡), 𝜑𝑖

𝐿(𝑡)}

𝑣𝑑,𝑖(𝑡)
, 𝑖𝑓  𝜆𝐷𝐴,𝑓(𝑡) − 𝛽1𝜆𝐷𝐴(𝑡) > 0, 𝜑𝑖

𝐿(𝑡) > 0

min{𝑣𝑐,𝑖(𝑡), 𝜓𝑖
𝐿(𝑡)}

𝑣𝑐,𝑖(𝑡)
,         𝑖𝑓  𝛽2𝜆𝐷𝐴,𝑓(𝑡) − 𝜆𝐷𝐴(𝑡) > 0, 𝜓𝑖

𝐿(𝑡) < 0

 

wobei 𝛽1 = 1 − 𝜂𝑑 und 𝛽2 = (1 − 𝜂𝑐)(1 − 𝜂𝑑) Parameter sind, die die Verluste in der Batterie 

erfassen. Beachten Sie, dass diese Richtlinie für jede Batterie unabhängig angewendet 

wird. Es ist wichtig zu beachten, dass eine solche Strategie garantieren kann, dass der 

Langzeiteffekt im Vergleich zum Referenzbetrieb der Batterie nur zu Einnahmen führen 

kann, da die mit dem Netz ausgetauschte Energie (positiv oder negativ) immer höchstens 

gleich der im Referenzszenario ausgetauschten Energie ist. Dies wird auch analytisch im 

Referenzbetrieb gezeigt (Chasparis & Lettner, Reinforcement-Learning-based Optimization 

for Day-ahead Flexibility Extraction in Battery Pools, 2020). 

Angesichts der Tatsache, dass eine solche Strategie sich auf Prognosen stützt (z.B. für die 

Berechnung von 𝜑𝑖
𝐿(𝑡) und 𝜓𝑖

𝐿(𝑡)), kann ein Lernschema auch für das Training einer para-

metrisierten Version dieser Strategie entworfen werden. Ein solches Lernschema wurde als 

Referenz vorgestellt (Chasparis & Lettner, Reinforcement-Learning-based Optimization for 

Day-ahead Flexibility Extraction in Battery Pools, 2020), und es ist für den Fall von Prog-

noseunsicherheiten besser geeignet. Unter der Annahme perfekter oder sehr genauer 

Prognosen kann die obige Strategie jedoch so umgesetzt werden, wie sie ist. 

Schließlich ist es wichtig, darauf hinzuweisen, dass die oben genannte Strategie im Allge-

meinen suboptimal sein wird, wobei jedoch garantiert ist, dass sie nicht schlechter ab-

schneiden wird als das Referenzszenario (unter perfekten Prognosen). Ein solcher Entwurf 

war notwendig, um zu gewährleisten, dass es keine langfristigen negativen Auswirkungen 

auf den Referenzbetrieb der Batterie geben kann. 

Zusammenfassend wählt der Batterie-Pool für das DA-Optimierungsproblem die Reihen-

folge der Zuschläge am nächsten Tag, 𝑢𝐷𝐴,𝑖
∗ (1), 𝑢𝐷𝐴,𝑖

∗ (2), … , 𝑢𝐷𝐴,𝑖
∗ (𝑁), für jede Batterie 𝑖 aus, 

indem er Algorithmus 5 aus Tabelle 5 simuliert, wobei die Zuschläge durch die oben dar-

gestellte Richtlinie 𝜇𝐷𝐴,𝑖
∗ (𝑥𝑖(𝑡)) bereitgestellt werden. Der Gesamtenergiezuschlag für ein be-

liebiges Intervall 𝑡 kann einfach durch Aufsummieren der Einzelzuschläge aller Batterien 

berechnet werden. Insbesondere ist der gesamte Lade- (oder negative) Zuschlag im Zeit-

intervall 𝑡 definiert als: 

𝐸𝐷𝐴,𝑛𝑒𝑔(𝑡) ≝ −∑[𝑢𝐷𝐴,𝑖
∗ (𝑡)]

+
𝑣𝑐,𝑖(𝑡) ≤ 0

𝑛

𝑖=1

 

und der entladende (oder positive) Energiezuschlag im Zeitintervall 𝑡 ist definiert als: 
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𝐸𝐷𝐴,𝑝𝑜𝑠(𝑡) ≝ ∑[𝑢𝐷𝐴,𝑖
∗ (𝑡)]

−
𝑣𝑑,𝑖(𝑡) ≥ 0

𝑛

𝑖=1

 

Angesichts der Definition der Strategie, die 𝑢𝐷𝐴,𝑖
∗ (𝑡) erzeugt, können wir nicht sowohl 

𝐸𝐷𝐴,𝑛𝑒𝑔(𝑡) ≠ 0 als auch 𝐸𝐷𝐴,𝑝𝑜𝑠(𝑡) ≠ 0 im gleichen Intervall 𝑡 haben. Schließlich ist zu beachten, 

dass das Vorzeichen der Zuschläge zum Laden/Entladen von Energie in Bezug auf den 

Haushalt definiert wurde. In Bezug auf das Netz werden die Energiezuschläge für das La-

den/Entladen einer negativen/positiven Flexibilität entsprechen. 

Unter der Annahme, dass die Energiezuschläge 𝐸𝐷𝐴,𝑛𝑒𝑔(𝑡) und 𝐸𝐷𝐴,𝑝𝑜𝑠(𝑡) dem DA-Markt an-

geboten wurden, kann der Nutzen, den der Battery-Pool erhält, wie folgt berechnet wer-

den: 

𝑔𝐷𝐴(𝑥(𝑡), 𝑢𝐷𝐴(𝑡)) = 𝐸𝐷𝐴,𝑛𝑒𝑔(𝑡) (𝜆𝐷𝐴(𝑡) + 𝜏𝐷𝐴) + 𝐸𝐷𝐴,𝑝𝑜𝑠(𝑡)𝜆𝐷𝐴(𝑡)   

3.1.4 RE Optimierung 

Für die Optimierung eines Regelenergiemarktes (RE) wird der nächste Tag in 4-Stunden-

Zeitintervalle eingeteilt, nämlich 0:00-4:00, 4:00-8:00, ..., 20:00-0:00. Wir werden die 

Notation 𝑡𝑅𝐸 = 1,2, … , 𝑁𝑅𝐸 = 6 verwenden, um diese Zeitintervalle aufzuzählen. Für jedes die-

ser Intervalle 𝑡𝑅𝐸  müssen wir die konstante Leistung (positiv oder negativ) berechnen, die 

als Zuschlag für die RE-Märkte angeboten werden könnte, so dass die entsprechenden 

Einnahmen maximiert werden (wiederum im Vergleich zur Referenzoperation). Für jedes 

𝑡𝑅𝐸 kann der Batterie-Pool sowohl positive als auch negative Zuschläge für die RE-Märkte 

anbieten. Obwohl die Leistungsverpflichtungen in Blöcken von 4 Stunden angeboten wer-

den, werden wir sie in mehreren Fällen dennoch in Bezug auf die entsprechende Energie 

beschreiben, was impliziert, dass sie gleichmäßig auf die 𝑁𝛥𝛵,𝑅𝐸 = 16 15-min-Zeitintervalle 

jedes 4-Stunden-Intervalls verteilt sind. 

Flexibilitätspotenzial. Das Lade-/Entlade-Flexibilitätspotenzial eines Zeitintervalls 𝑡𝑅𝐸 =
1,… ,𝑁𝑅𝐸 = 6 wird berechnet als die maximale Energie, die während eines 4-stündigen Zeit-

intervalls mit konstanter Leistung in den Batterie-Pool geladen/aus ihm entladen werden 

kann. Diese Flexibilitätspotenziale (Laden/Entladen) können zu Beginn jedes Intervalls 𝑡𝑅𝐸 
berechnet werden, sofern der aktuelle Zustand und die Prognosen für die nächsten 4 Stun-

den vorliegen. Wir definieren 𝑣𝑐𝑜𝑛𝑠𝑡,𝑑,𝑖(𝑡𝑅𝐸) und 𝑣𝑐𝑜𝑛𝑠𝑡,𝑐,𝑖(𝑡𝑅𝐸) als das maximale Entlade- bzw. 

Ladeenergie-Flexibilitätspotenzial des Haushalts 𝑖, das im Zeitintervall 𝑡𝑅𝐸 zur Verfügung 

steht. 

Optimale Strategie und simulationsbasierte Optimierung. Ähnlich wie im Fall der 

DA/ID-Optimierung folgen wir einer simulationsbasierten Optimierung, wie in Algorithmus 

4 in Tabelle 4 beschrieben. Insbesondere die simulationsbasierte Optimierung wird in der 

folgenden Tabelle beschrieben. 
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Tabelle 6 Optimale RE-Zuschläge 

Der Zuschlag wird etwas anders charakterisiert, da es im gleichen Intervall 𝑡𝑅𝐸.  sowohl 

positive als auch negative Zuschläge geben könnte. Darüber hinaus könnte es in jeder 

Richtung zwei Merit-Order-Positionen geben (niedrig und hoch), wie es auf SRL- und TRL-

Märkten der Fall ist. Zu diesem Zweck wird die RE-Energieaktivierung 𝑢𝑅𝐸(𝑡) charakterisiert 

als: 

𝑢𝑅𝐸 = {(
𝛼𝑝𝑜𝑠 𝑢𝑅𝐸,𝑝𝑜𝑠,𝑙𝑜𝑤

(1 − 𝛼𝑝𝑜𝑠) 𝑢𝑅𝐸,𝑝𝑜𝑠,ℎ𝑖𝑔ℎ
) , (

𝛼𝑛𝑒𝑔  𝑢𝑅𝐸,𝑛𝑒𝑔,𝑙𝑜𝑤

(1 − 𝛼𝑛𝑒𝑔) 𝑢𝑅𝐸,𝑛𝑒𝑔,ℎ𝑖𝑔ℎ
)} 

wobei 𝑢𝑅𝐸,𝑝𝑜𝑠,𝑙𝑜𝑤, 𝑢𝑅𝐸,𝑝𝑜𝑠,ℎ𝑖𝑔ℎ den niedrigen und hohen Entlade- (oder positiven) Aktivierungen 

und 𝑢𝑅𝐸,𝑛𝑒𝑔,𝑙𝑜𝑤, 𝑢𝑅𝐸,𝑛𝑒𝑔,ℎ𝑖𝑔ℎ  den niedrigen und hohen Lade- (oder negativen) Aktivierungen 

entsprechen. Die Parameter 𝛼𝑝𝑜𝑠, 𝛼𝑛𝑒𝑔 ∈ {0,1}  sind zu bestimmen und dienen dazu, durch-

zusetzen, dass wir uns entweder der niedrigen oder der hohen Merit-Order-Position, aber 

nicht beiden verpflichten können. Wenn wir zum Beispiel 𝛼𝑝𝑜𝑠 = 1 wählen, dann verpflichten 

wir uns der niedrigen Entladungsrichtung und die Entladungsaktivierungen werden be-

stimmt durch: 

𝑢𝑅𝐸,𝑝𝑜𝑠,𝑙𝑜𝑤 ≝ (

𝑢𝑅𝐸,𝑝𝑜𝑠,𝑙𝑜𝑤,1
𝑢𝑅𝐸,𝑝𝑜𝑠,𝑙𝑜𝑤,2

⋮
𝑢𝑅𝐸,𝑝𝑜𝑠,𝑙𝑜𝑤,𝑛

) 

wobei 𝑢𝑅𝐸,𝑝𝑜𝑠,𝑙𝑜𝑤,𝑖 der Aktivierung des 𝑖-ten Haushalts (über das 4-Stunden-Intervall) ent-

spricht. Manchmal werden wir den Begriff 𝑢𝑅𝐸,𝑖 verwenden, um die speziellen Entscheidun-

gen für die Batterie 𝑖 zu bezeichnen. Alle oben genannten Optimierungsvariablen müssen 

für jedes 4-Stunden-Intervall 𝑡𝑅𝐸 bestimmt werden. Der Gesamtenergiezuschlag für ein 

beliebiges Intervall 𝑡 kann einfach berechnet werden, indem die Einzelzuschläge aller Bat-

terien wie folgt aufsummiert werden: 

𝐸𝑅𝐸,𝑛𝑒𝑔(𝑡) ≝∑𝛼𝑛𝑒𝑔𝑢𝑅𝐸,𝑛𝑒𝑔,𝑙𝑜𝑤,𝑖
∗ (𝑡𝑅𝐸)𝑣𝑐𝑜𝑛𝑠𝑡,𝑐,𝑖(𝑡𝑅𝐸) + (1 − 𝛼𝑛𝑒𝑔)𝑢𝑅𝐸,𝑛𝑒𝑔,ℎ𝑖𝑔ℎ,𝑖

∗ (𝑡𝑅𝐸)𝑣𝑐𝑜𝑛𝑠𝑡,𝑐,𝑖(𝑡𝑅𝐸)

𝑛

𝑖=1

 

𝐸𝑅𝐸,𝑝𝑜𝑠(𝑡) ≝∑𝛼𝑝𝑜𝑠𝑢𝑅𝐸,𝑝𝑜𝑠,𝑙𝑜𝑤,𝑖
∗ (𝑡𝑅𝐸)𝑣𝑐𝑜𝑛𝑠𝑡,𝑐,𝑖(𝑡𝑅𝐸) + (1 − 𝛼𝑝𝑜𝑠)𝑢𝑅𝐸,𝑝𝑜𝑠,ℎ𝑖𝑔ℎ,𝑖

∗ (𝑡𝑅𝐸)𝑣𝑐𝑜𝑛𝑠𝑡,𝑐,𝑖(𝑡𝑅𝐸)

𝑛

𝑖=1
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Ziel ist es, eine optimale Strategie 𝜇𝑅𝐸
∗ (𝑥(𝑡𝑅𝐸)) zu generieren, die bei dem aktuellen Zustand 

𝑥(𝑡𝑅𝐸) in jedem Zeitintervall 𝑡𝑅𝐸 = 1,2, … ,6. die Strom-/Energieverpflichtungen für den RE-

Markt bereitstellt. Der aktuelle Zustand 𝑥(𝑡𝑅𝐸) fasst Informationen zusammen, die zu Be-

ginn des Intervalls 𝑡𝑅𝐸 zur Verfügung stehen (z.B. der Ladezustand der teilnehmenden 

Batterien und die Prognosen der PV- und nicht flexiblen Stromlast). 

Bevor wir die optimale Strategie beschreiben, müssen wir einige Notationen einführen. Wir 

definieren: 

• 𝜆̂𝑅𝐸,𝑝𝑜𝑠,ℎ𝑖𝑔ℎ(𝑡𝑅𝐸) der Durchschnittspreis für positive hohe Merit-Order-

Position RE-Aktivierungen im Zeitintervall 𝑡𝑅𝐸 

• 𝜆̂𝑅𝐸,𝑝𝑜𝑠,𝑙𝑜𝑤(𝑡𝑅𝐸) der Durchschnittspreis für positive niedrige Merit-Or-

der-Position RE-Aktivierungen im Zeitintervall 𝑡𝑅𝐸 

• 𝜆̂𝑅𝐸,𝑛𝑒𝑔,ℎ𝑖𝑔ℎ(𝑡𝑅𝐸) der Durchschnittspreis für negative hohe Merit-Order-

Position RE-Aktivierungen im Zeitintervall 𝑡𝑅𝐸 

• 𝜆̂𝑅𝐸,𝑛𝑒𝑔,𝑙𝑜𝑤(𝑡𝑅𝐸) der Durchschnittspreis für negative niedrige Merit-Or-

der-Position RE-Aktivierungen im Zeitintervall 𝑡𝑅𝐸 

• 𝜆̂𝑅𝐸,𝑝𝑜𝑠,𝐿𝑃(𝑡𝑅𝐸) der Durchschnittspreis für positive Strom-RE-

Zuschläge zum Zeitpunkt des Inkrafttretens 𝑡𝑅𝐸 

• 𝜆̂𝑅𝐸,𝑛𝑒𝑔,𝐿𝑃(𝑡𝑅𝐸) der Durchschnittspreis für negative Strom-RE-

Zuschläge zum Zeitpunkt des Inkrafttretens 𝑡𝑅𝐸 

• 𝜏𝑅𝐸 der Netztarif bei negativen RE-Aktivierungen  

• 𝑝̂𝑅𝐸,𝑝𝑜𝑠,𝑙𝑜𝑤(𝑡𝑅𝐸) die durchschnittliche Abrufwahrscheinlichkeit für posi-

tive RE in der niedrigen Merit-Order-Position im Zeitintervall  𝑡𝑅𝐸 

• 𝑝̂𝑅𝐸,𝑝𝑜𝑠,ℎ𝑖𝑔ℎ(𝑡𝑅𝐸) die durchschnittliche Abrufwahrscheinlichkeit für po-

sitive RE in der hohen Merit-Order-Position im Zeitintervall 𝑡𝑅𝐸 

• 𝑝̂𝑅𝐸,𝑛𝑒𝑔,𝑙𝑜𝑤(𝑡𝑅𝐸) die durchschnittliche Abrufwahrscheinlichkeit für ne-

gative RE in der niedrigen Merit-Order-Position im Zeitintervall 𝑡𝑅𝐸 

• 𝑝̂𝑅𝐸,𝑛𝑒𝑔,ℎ𝑖𝑔ℎ(𝑡𝑅𝐸) die durchschnittliche Abrufwahrscheinlichkeit für po-

sitive RE in der hohen Merit-Order-Position im Zeitintervall 𝑡𝑅𝐸 

 

In ähnlicher Weise definieren wir 𝑝𝑅𝐸,𝑝𝑜𝑠,ℎ𝑖𝑔ℎ(𝑡), 𝑝𝑅𝐸,𝑝𝑜𝑠,𝑙𝑜𝑤(𝑡), 𝑝𝑅𝐸,𝑛𝑒𝑔,ℎ𝑖𝑔ℎ(𝑡), 𝑝𝑅𝐸,𝑛𝑒𝑔,𝑙𝑜𝑤(𝑡) als die 

Wahrscheinlichkeiten von Aktivierungen und die entsprechenden Preise 𝜆𝑅𝐸,𝑝𝑜𝑠,ℎ𝑖𝑔ℎ(𝑡), 

𝜆𝑅𝐸,𝑝𝑜𝑠,𝑙𝑜𝑤(𝑡), 𝜆𝑅𝐸,𝑛𝑒𝑔,ℎ𝑖𝑔ℎ(𝑡), 𝜆𝑅𝐸,𝑛𝑒𝑔,𝑙𝑜𝑤(𝑡), 𝜆𝑅𝐸,𝑝𝑜𝑠,𝐿𝑃(𝑡), 𝜆𝑅𝐸,𝑛𝑒𝑔,𝐿𝑃(𝑡), die in einer Granularität von 

15min-Intervallen bereitgestellt werden, d.h.., für jedes 𝑡 = 1,… , 𝑁, wobei 𝑁 = 96. Wir wer-

den auch die Begriffe 𝜑𝑖
𝐿(𝑡) und 𝜓𝑖

𝐿(𝑡) verwenden, die der Energie entsprechen, die ein 

Haushalt 𝑖 in den kommenden 𝐿 15min-Intervallen in das Netz einspeist bzw. aus dem Netz 

abnimmt. 

Angesichts der obigen Terminologie können wir auch den erwarteten Nutzen des RE-

Marktes definieren (angesichts der erwarteten Aktivierungsaufrufe). Dieser wird wie folgt 

definiert: 

𝑔𝑅𝐸(𝑥(𝑡), 𝑢𝑅𝐸(𝑡)) = 𝐸𝑅𝐸,𝑛𝑒𝑔(𝑡) (𝜆𝑅𝐸(𝑡) + 𝜏𝑅𝐸) + 𝐸𝑅𝐸,𝑝𝑜𝑠(𝑡)𝜆𝑅𝐸(𝑡)   

(bei gleichzeitiger Aktivierung von RE und DA gelten besondere Bedingungen).  

Für jede Batterie/jeden Haushalt 𝑖 = 1,2, … , 𝑛 gibt es ein maximal verfügbares Lade- und 

Entladeenergiepotenzial, das bei konstanter Leistung zur Verfügung gestellt werden kann, 

bezeichnet durch 𝑣𝑐𝑜𝑛𝑠𝑡,𝑐,𝑖(𝑡𝑅𝐸) bzw. 𝑣𝑐𝑜𝑛𝑠𝑡,𝑑,𝑖(𝑡𝑅𝐸). Wir trennen das verfügbare Flexibilitätspo-

tenzial. Für jede Batterie/jeden Haushalt 𝑖 berechnen wir auch die Größen 𝜑𝑖
𝐿(𝑡𝑅𝐸), 𝜓𝑖

𝐿(𝑡𝑅𝐸), 

also die Energie, die in den kommenden 𝐿 -Zeitintervallen ab der Zeitinstanz 𝑡𝑅𝐸 eingespeist 

und beschafft werden soll. 
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Erinnern Sie sich, dass die optimale DA-Strategie höchstens mit den Mengen 𝜑𝑖
𝐿(𝑡𝑅𝐸), 

𝜓𝑖
𝐿(𝑡𝑅𝐸) handelt. Daher entscheiden wir in einem ersten Schritt, ob dieser Teil des Potenzials 

auf dem DA-Markt gehandelt oder auf dem RE-Markt verwendet wird. Zu diesem Zweck 

führen wir die Booleschen Variablen 𝛾𝑝𝑜𝑠,𝑙𝑜𝑤(𝑡𝑅𝐸), 𝛾𝑝𝑜𝑠,ℎ𝑖𝑔ℎ(𝑡𝑅𝐸) und die entsprechenden Vari-

ablen für die negative Richtung 𝛾𝑛𝑒𝑔,𝑙𝑜𝑤(𝑡𝑅𝐸), 𝛾𝑛𝑒𝑔,ℎ𝑖𝑔ℎ ein. Insbesondere wird mit 𝛾𝑝𝑜𝑠,𝑙𝑜𝑤 = 1 

erklärt, dass der erwartete Nutzen im DA-Markt pro kWh höher ist als der erwartete Nutzen 

unter der positiven RE niedrigen Merit-Order-Position pro kWh der angebotenen Aktivie-

rung, andernfalls 𝛾𝑝𝑜𝑠,𝑙𝑜𝑤 = 0. Entsprechend definieren wir die Variablen 𝛾𝑝𝑜𝑠,ℎ𝑖𝑔ℎ(𝑡𝑅𝐸), 

𝛾𝑛𝑒𝑔,𝑙𝑜𝑤(𝑡𝑅𝐸), 𝛾𝑛𝑒𝑔,ℎ𝑖𝑔ℎ. 

Der Algorithmus zur Auswahl der optimalen RE-Angebote wird ebenfalls die Begriffe "di-

rekter" und "indirekter" Nutzen verwenden. Zum Beispiel umfassen die direkten Vorteile 

für die positive RE Merit-Order-Position, angegeben durch 𝐷𝐸𝑈𝑝𝑜𝑠,𝑙𝑜𝑤,𝑖(𝑡𝑅𝐸), den erwarteten 

Nutzen aus den Energieaktivierungen plus den festen Nutzen aus den Leistungsaktivierun-

gen innerhalb des betrachteten Zeitintervalls 𝑡𝑅𝐸. Auf der anderen Seite decken die indi-

rekten Vorteile 𝐼𝐸𝑈𝑝𝑜𝑠,𝑙𝑜𝑤,𝑖(𝑡𝑅𝐸) den erwarteten Nutzen durch langfristige positive Auswirkun-

gen unserer Entscheidungen ab. 

Wie in Algorithmus 6 in Tabelle 6 beschrieben, basiert die Methodik auf einem simulations-

basierten Ansatz, bei dem die Entscheidungen nacheinander für alle Zeitschritte 𝑡𝑅𝐸 getrof-

fen werden und jede dieser Entscheidungen die kurz- und langfristigen Auswirkungen auf 

den Nutzen erfasst. Die langfristigen Auswirkungen werden innerhalb eines endlichen Ho-

rizonts von 𝐿 Schritten vorwärts erfasst, d.h. im Bereich der Zeit eines Batteriezyklus. 

Dieser ist so eingestellt, dass gewährleistet ist, dass sich die angebotene Flexibilität im 

Vergleich zum Referenzbetrieb der Batterie immer verbessert. 
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Tabelle 7 Optimale RE-Zuschläge 
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3.1.5 RE+DA/ID Optimierung 

Die folgende Tabelle 8 beschreibt die simulationsbasierte Optimierung für die kombinierten 

RE+DA-Angebote. Im Wesentlichen besteht die kombinierte Optimierung aus einer se-

quentiellen Ausführung von Algorithmus 6 und Algorithmus 7. Beachten Sie, dass Algorith-

mus 6 bereits in seinem ersten Schritt die potenziellen Einnahmen aus der DA-Optimierung 

berücksichtigt. Dann, nach dem Ende der RE-Optimierung, wird die DA-Optimierung auf 

dem verbleibenden verfügbaren Potenzial ausgeführt. 

Tabelle 8 Optimale RE+DA/ID Zuschläge 

Die Optimierung unter dem PRL-Markt wird auf ähnliche Weise berechnet wie in den Al-

gorithmen 6 und 7 beschrieben. Die Unterschiede bestehen darin, dass die angebotene 

Leistung sowohl in positiver als auch in negativer Richtung symmetrisch ist, es gibt nur 

einen Preis für die angebotene Leistung (in beiden Richtungen). 

3.2 Ergebnisse (Flexibilität und Erlöse) 

In diesem Abschnitt präsentieren wir die Ergebnisse der Optimierung in verschiedenen 

Szenarien (wie in Abschnitt 2 beschrieben). Die Simulationen wurden mit einem Satz von 

30 Batterien durchgeführt, die aus einem originalen Satz von 4 Batterien mit stochastisch 

modifizierten PV- und Stromlastprofilen repliziert wurden. Die Merkmale dieser Batterien 

sind in Tabelle 9 dargestellt. 

 

Tabelle 9 Merkmale der Batterien 

Merkmal Batterie 1 Batterie 2 Batterie 3 Batterie 4 

Energie-Garantie (MWh) 17,06 10,24 20,44 26,63 

Zeit-Garantie (Jahre) 10 10 10 10 

Kapazität (kWh) 6,00 3,60 7,20 9,60 

Maximale Ladeleistung 

(kW) 

4,64 2,72 5,52 7,36 

Maximale Entladeleistung 

(kW) 

4,64 2,72 5,00 5,00 

 

3.2.1 Referenzszenario 

Das Referenzszenario entspricht dem Betrieb der Batterie unter dem in Abschnitt 3.1 be-

schriebenen Referenzbetrieb der Batterie. Wie dort beschrieben, basiert der Referenzbat-

teriebetrieb auf einem auf Autarkie basierenden logischen Controller. Zusätzlich zu diesem 

Referenzszenario berechnen wir die Energie-/Leistungszuschläge, die in einem Strommarkt 

(RE/DA/ID) angeboten werden. Das Referenzszenario dient auch als Referenz für unsere 
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Erträge/Kosten. Insbesondere entsprechen die in diesem Abschnitt dargestellten Einnah-

men der Differenz der Kosten zum Referenzszenario. 

3.2.2 PRL+DA+ID 

In diesem Abschnitt verwenden wir das RE-Optimierungsframework zusammen mit der 

DA- und ID-Optimierungsmethodik, um eine kombinierte PRL+DA+ID-Optimierung bereit-

zustellen. 

Tabelle 10 Einnahmen pro Maximale Ladeleistung pro Jahr (Euro/kW/Jahr) für die 
PRL+DA+ID Optimierung 

Markt Zeitraum 1 Zeitraum 2 

Genaue  

Prognosen 

Falsche   

Prognosen 

Genaue 

Prognosen 

Falsche 

Prognosen 

PRL+DA+ID 3,20 2,36 3,39 2,64 

 

in Abbildung 9 (genaue Prognosen) und Abbildung 10 (falsche Prognosen) sehen wir auch 

die gesamte verfügbare Flexibilität im Vergleich zu der verfügbaren RE-Flexibilität. Beach-

ten Sie, dass die verfügbare RE-Flexibilität immer unter konstanter Leistung berechnet 

wird (was bedeutet, dass sie immer unter der Gesamtflexibilität liegen wird). Außerdem 

wird diese Flexibilität nur für die Batterien mit einem Aktivierungsfaktor von weniger als 1 

berechnet. Schließlich ist zu beachten, dass die verfügbare Flexibilität für ein Intervall von 

15 Minuten ohne die Aktivierungen dieses Intervalls berechnet wird.  

 

 

Abbildung 8 Kumulative Einnahmen für die PRL+DA+ID Optimierung über genaue Prog-
nosen 
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Abbildung 9 Energiezuschläge gegenüber tatsächlich verfügbarer Flexibilität für 
PRL+DA+ID Optimierung und genaue Prognosen 

 

Abbildung 10 Energiezuschläge gegenüber tatsächlich verfügbarer Flexibilität für die 
PRL+DA+ID Optimierung und falsche Prognosen 
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Abbildung 11 Gesamtenergie zur/von der Batterie und Aktivierungsfaktoren für die 

PRL+DA+ID Optimierung und genaue Prognosen 

 

Abbildung 12 Beispiel für PRL-Aktivierungen während eines Tages 



Deliverable Nr. D.9 | Beschreibung der Algorithmen und Bewertung der Skalierbarkeit 38 

 

Abbildung 13 Beispiel für DA/ID-Aktivierungen während eines Tages 

 

3.2.3 SRL + DA + ID 

Die folgenden Simulationen zeigen die Leistung der Optimierung unter dem SRL-Markt 

und in Kombination mit den DA- und ID-Märkten. 

 

Tabelle 11 Einnahmen pro Maximale Ladeleistung pro Jahr (Euro/kW/Jahr) für die 
SRL+DA+ID Optimierung 

Markt Zeitraum 1 Zeitraum 2 

Genaue  

Prognosen 

Falsche   

Prognosen 

Genaue 

Prognosen 

Falsche 

Prognosen 

SRL+DA+ID 17,08 15,77 13,20 12,05 

 

In Abbildung 14 und Abbildung 15 demonstrieren wir die Leistung der Batteriepool-Opti-

mierung unter dem SRL+DA+ID Zeitraum 1 und Zeitraum 2, wobei wir die unterschiedli-

chen Teile der Zielfunktion zeigen. 
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Abbildung 14 Gesamteinnahmen für die SRL+DA+ID Optimierung in Zeitraum 1 und ge-
naue Prognosen 

 

Abbildung 15 Gesamteinnahmen für die SRL+DA+ID Optimierung in Zeitraum 2 und ge-
naue Prognosen 
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Abbildung 16 Energiezuschläge (mit RE Zuschläge) gegenüber tatsächlich verfügbarer Fle-
xibilität und genaue Prognosen über SRL+DA+ID Optimierung und Zeitraum 1. 

 

Abbildung 17 Energiezuschläge (mit RE Aktivierungen) gegenüber tatsächlich verfügbarer 
Flexibilität und genauen Prognosen über SRL+DA+ID Optimierung und Zeitraum 1. 
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Abbildung 18 Gesamtenergie zur/vor der Batterie über SRL+DA+ID Optimierung und 
genaue Prognosen in Zeitraum 1 und 2. 

 

Abbildung 19 Aktivierungs-Faktoren für die SRL+DA+ID Optimierung und genauen 
Prognosen in Zeitraum 1 und Zeitraum 2 
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Abbildung 20 Beispiel für die Leistung der SRL Aktivierungen für die SRL+DA+ID 

Optimierung, genaue Prognose und Zeitraum 1 

 

 

Abbildung 21 Beispiel für die Leistung der DA/ID Aktivierungen für die SRL+DA+ID Opti-

mierung, genaue Prognose und Zeitraum 1 
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3.2.4 TRL+DA+ID 

Die folgende Tabelle 12 zeigt die Leistung der Optimierung unter dem TRL+DA+ID-Markt. 

 

Tabelle 12 Einnahmen pro Maximale Ladeleistung pro Jahr (Euro/kW/Jahr) über TRL  

Markt Zeitraum 1 Zeitraum 2 

Genaue  

Prognosen 

Falsche   

Prognosen 

Genaue 

Prognosen 

Falsche 

Prognosen 

ΤRL+DA+ID 1,12 -0,09 1,97 0,64 

 

In den folgenden Abbildungen stellen wir die Reaktion der TRL in Zeitraum 1 unter genauen 

und falschen Prognosen dar. 

 

 

Abbildung 22 Kumulative Einnahmen für TRL+DA+ID Optimierung, genaue Prognosen und 

Zeitraum 1 
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Abbildung 23 Kumulative Einnahmen für TRL+DA+ID Optimierung, falsche Prognosen und 
Zeitraum 2 

 

Abbildung 24 Energiezuschläge gegenüber tatsächlich verfügbarer Flexibilität für die 
TRL+DA+ID Optimierung, genaue Prognosen und Zeitraum 1 
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Abbildung 25 Beispiel für die Leistung der TRL Aktivierungen für die TRL+DA+ID 
Optimierung, genaue Prognose und Zeitraum 1 

 

Abbildung 26 Beispiel für die Leistung der DA/ID Aktivierungen für die TRL+DA+ID Opti-
mierung, genaue Prognose und Zeitraum 1 
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Abbildung 27 Gesamtenergie zur/von der Batterie und Aktivierungsfaktoren für die 

TRL+DA+ID Optimierung, genaue Prognose und Zeitraum 1 

 

3.2.5 DA+ID 

In diesem Abschnitt stellen wir eine kombinierte Optimierung für DA- und ID-Märkte vor. 

Wie bereits erwähnt, wird in jedem der beiden Märkte die gleiche Methode der sequentiel-

len Optimierung auf der Grundlage der in Abschnitt 3.1.3 vorgestellten Approximate Dy-

namic Programming angewendet. 

Tabelle 13 Einnahmen pro Maximale Ladeleistung (Euro/kW) in Zeitraum 3(6/1/2020 – 
20/1/2020) 

Markt Zeitraum 3 (6/1/2020 – 

20/1/2020) 

Genaue  

Prognosen 

Falsche   

Prognosen 

DA+ID 0,105 0,122 

 

In den folgenden Abbildungen sehen wir die Leistung des Optimierungsalgorithmus in der 

Zeitraum 3 von 6/1/2020 - 20/1/2020. Wenn wir diese Leistung über einen Zeitraum von 

1 Jahr skalieren, sehen wir, dass die jährliche Leistung ungefähr 13 Euro pro Batterie be-

trägt. Dieser Betrag ist etwa doppelt so hoch wie der Betrag, den wir durch die DA-

Optimierung erhalten haben. Wir sollten jedoch noch höhere Einnahmen aus der ID-

Optimierung erwarten, da es innerhalb des Zeitraums 6/1/2020-20/1/2020 keine signifi-

kante PV-Erzeugung gibt. 
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Abbildung 28 Kumulative Einnahmen für DA+ID Optimierung, genaue Prognosen in der 

Zeitraum 3 6/1/2020 – 20/1/2020 

 

 

Abbildung 29 Energiezuschläge gegenüber tatsächlich verfügbarer Flexibilität für die 
DA+ID Optimierung und genaue Prognosen in Zeitraum 3 6/1/2020 – 20/1/2020 
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Abbildung 30 Beispiel für die Leistung der TRL Aktivierungen für die DA+ID Optimierung 
und genaue Prognosen in Zeitraum 3 (6/1/2020 – 20/1/2020) 

 

 

Abbildung 31 Gesamtenergie zur/von der Batterie und Aktivierungsfaktore für die 
DA+ID Optimierung und genaue Prognosen in Zeitraum 3 6/1/2020 – 20/1/2020 

3.3 Parametervariation 
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3.3.3 CO2 Vergleich 

In diesem Abschnitt stellen wir die DA-Optimierung unter dem Ziel der Minimierung der 

CO2-Emissionen vor. Ziel ist es, Strom zu Zeiten mit geringen CO2-Emissionen zu beziehen 

und Energie zu Zeiten mit hohen CO2-Emissionen einzuspeisen. Insgesamt wird die ge-

samte aus dem Netz bezogene Energie die gleiche sein wie im Referenzszenario. Auf diese 

Weise trägt der Batteriepool zur Gesamtreduktion der CO2-Emissionen bei. Die folgenden 

Abbildungen zeigen die Leistung der CO2-basierten Optimierung unter genauen und fal-

schen Prognosen. 

 

Tabelle 16 CO2 Emissionenreduzierung (kg) pro Maximale Ladeleistung (kW) 

Markt Zeitraum 2 

Genaue 

Prognosen 

Falsche 

Prognosen 

DA (CO2) 0.52 0.18 
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Abbildung 42 Kumulative CO2 Emissionenreduzierung für genaue Prognosen und Zeitraum 

2 

 

Abbildung 43 Gesamtenergie zur/von der Batterie für die CO2 Optimierung, genaue 

Prognosen und Zeitraum 2 
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Abbildung 44 Energiezuschläge gegenüber tatsächlich verfügbarer Flexibilität für die CO2 
Optimierung, genaue Prognosen und Zeitraum 2 

 

 

Abbildung 45 Beispiel für die Leistung der DA Aktivierungen für die CO2 Optimierung, 

genaue Prognosen und Zeitraum 2 



Deliverable Nr. D.9 | Beschreibung der Algorithmen und Bewertung der Skalierbarkeit 57 

3.3.4 EXAA DA Preise 

In diesem Abschnitt vergleichen wir die Erlöse der DA-Optimierung bei Verwendung der 

EXAA (1/4h) DA-Preise im Vergleich zu den Erlösen unter den EPEX (1h) DA-Preisen. Der 

Optimierungsrahmen ist derselbe wie in Abschnitt Fehler! Verweisquelle konnte nicht 

gefunden werden., wo Entscheidungen mit 1/4h Granularität getroffen werden und der 

einzige Unterschied der DA-Preis ist. Die Simulationen wurden im Zeitraum 2 im Fall von 

genauen und falschen Prognosen durchgeführt. Die Einnahmen und die gehandelte Energie 

sind in Tabelle 17 bzw. Tabelle 18 aufgeführt.  

 

Tabelle 17 Einnahmen pro Maximale Ladeleistung pro Jahr (Euro/kW/Jahr) für die DA Op-
timierung mit EXAA (1/4h) Preise 

Markt Zeitraum 2 (EPEX Preise) Zeitraum 2 (EXAA Preise) 

Genaue  

Prognosen 

Falsche   

Prognosen 

Genaue 

Prognosen 

Falsche 

Prognosen 

DA 0,88 0,27 1,84 0,67 

 

Tabelle 18 Gekaufte/verkaufte Energie pro Maximale Ladeleistung pro Jahr 
(kWh/kW/Jahr) für die DA Optimierung mit EXAA (1/4h) Preise und Genauen Prognosen 

Markt Zeitraum 2 (EPEX Preise) Zeitraum 2 (EXAA Preise) 

DA Markt 
Käufe 

DA Markt Ver-
käufe 

DA Markt 
Käufe 

DA Markt 
Verkäufe 

DA 938,81 317,85 940,66 319,04 

DA (Refer-

enzszenario) 

932,61 317,77 932,61 317,77 

 

Wir beobachten, dass die Einnahmen unter den EXAA (1/4h)-Preisen um 109% im Ver-

gleich zu den entsprechenden Einnahmen unter den EPEX (1h)-Preisen steigen. Darüber 

hinaus ist die insgesamt gehandelte Energie in diesen beiden Fällen etwa gleich hoch wie 

in Tabelle 18 dargestellt. Alle Bewertungen wurden einschließlich der Aktivierungskosten 

der Batterien durchgeführt. 

In Abbildung 46 und Abbildung 47 stellen wir die Gesamteinnahmen für den Fall genauer 

bzw. nicht genauer Prognosen für den Zeitraum 2 dar. Ebenfalls in Abbildung 48 stellen 

wir die Gesamtenergie, die in die Batterien geladen und aus den Batterien entladen wird, 

und die entsprechenden Aktivierungsfaktoren während der Zeitraum 2 dar. Schließlich ha-

ben wir in Abbildung 49 und Abbildung 50 zwei Beispiele für die Response der DA-

Optimierung während eines Tages vorgelegt. Wir beobachten, dass die DA EXAA (1/4h) 

während eines Tages stärker variieren (im Vergleich zum DA EPEX-Preis). Infolgedessen 

ergeben sich mehr Möglichkeiten hinsichtlich der Preisunterschiede während eines Tages. 

Aufgrund der Aktivierungskosten kann die insgesamt gehandelte Energie jedoch nicht we-

sentlich größer sein als die im Referenzszenario gehandelte Energie. 
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Abbildung 46 Kumulative Einnahmen für die DA Optimierung in Zeitraum 2 mit genauen 
Prognosen und EXAA (1/4h) Preisen 

 

Abbildung 47 Kumulative Einnahmen für die DA Optimierung in Zeitraum 2 mit falschen 
Prognosen und EXAA (1/4h) Preisen 
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Abbildung 48 Gesamtenergie zur/von der Batterie und Aktivierungsfaktoren für die DA 

Optimierung in Zeitraum 2 mit genauen Prognosen und EXAA (1/4h) Preisen 

 

 

Abbildung 49 Beispiel für die DA Optimierung in Zeitraum 2 mit genauen Prognosen und 

EXAA (1/4h) Preisen 
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Abbildung 50 Beispiel für die DA Optimierung in Zeitraum 2 mit genauen Prognosen und 
EXAA (1/4h) Preisen 

3.4 Zusammenfassung 

 

In den vorhergehenden Unterabschnitten stellten wir eine Reihe von Experimenten in ver-

schiedenen Arten von Ausgleichsenergiemärkten und auch in Kombination mit DA- und ID-

Märkten vor, einschließlich perfekter und unvollkommener Prognosen. Wir haben auch 

mehrere Experimente unter verschiedenen Bedingungen durchgeführt, z.B, nur negative 

RE in den ersten beiden 4h Blöcken, reservieren die Batterien nur für SRL, reduzierte RE-

Netz Tarife, und CO2 Vergleich. 

 

Insgesamt lauten unsere Anmerkungen wie folgt: 

• Die SRL+DA+ID-Optimierung sorgt für die größten Einnahmen von 

allen Märkten. Im Durchschnitt werden diese Einnahmen auf 15 Euro 

/ KW maximale Ladeleistung geschätzt. 

• PRL+DA+ID bietet ebenfalls hohe Einnahmen, aber etwa 21% weni-

ger als die Einnahmen der SRL+DA+ID-Optimierung. 

• TRL+DA+ID bringt noch weniger Einnahmen, die etwa 10% der Ein-

nahmen der SRL+DA+ID-Optimierung entsprechen. 

• DA+ID bieten ebenfalls Einnahmemöglichkeiten, allerdings in der 

Größenordnung von 18% der Einnahmen der SRL+DA+ID-

Optimierung. Eine weitere wichtige Bemerkung ist die Tatsache, dass 

bei der DA+ID-Optimierung größere Energiemengen in die/aus der 

Batterie geladen/entladen werden müssen, was sich erheblich auf die 

Lebensdauer der Batterie auswirken kann. 
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4 Boiler-Pool Optimierung 

4.1 Methode 

 

Das Ziel der Optimierung ist es, unter Berücksichtigung der technischen Grenzen der Boi-

ler-Einheiten, den Komfort-Einstellungen des Kunden und der Preisentwicklung am Ener-

giemarkt einen optimalen Fahrplan für jede Komponente zu ermitteln. 

Um den Boiler-Pool auch bei großer Teilnehmerzahl abzubilden und in ausreichender Zeit 

optimieren zu können wurde anstelle eines Wärmeschicht-Modells für die Boiler-Einheiten 

ein Standard Kapazitätsmodell verwendet. Dieses erlaubt bei einer negativen Kostenab-

weichung von 6-7% (Schütz & Streblov, S. 30) im Vergleich zu einem Schichtmodell, eine 

viel schnellere Berechnung des Fahrplans. Des Weiteren werden die Wärmekapazität des 

Warmwassers (𝑐𝑜𝑛𝑠𝑡𝑊−𝐾𝑎𝑝𝑎𝑧𝑖𝑡ä𝑡) und die Umgebungstemperatur als konstant angenom-

men. 

 

Eine Komponente kann somit beschrieben werden mit: 

Der variablen Heizleistung (𝑃𝐵𝑒𝑧𝑢𝑔), der durchschnittlichen Warmwassertemperatur 

(𝑇𝐵𝑜𝑖𝑙𝑒𝑟), den temperaturabhängigen Verlusten (𝑄𝑉𝑒𝑟𝑙𝑢𝑠𝑡)
 (Schütz & Streblov, S. 25), der 

zugeführten Wärmemenge (𝑄𝐼𝑛) und dem prognostizierten Warmwasserverbrauch 

(𝑄𝑉𝑒𝑟𝑏𝑟𝑎𝑢𝑐ℎ). 

Des Weiteren werden folgende, Modell-spezifische Parameter benötigt: 

Die minimale und maximale durchschnittlichen Temperatur (𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥) des Boilers, die 

maximale Leistung und Effizienz der Heizeinheit (𝑃𝑚𝑎𝑥 , 𝜇𝐵𝑜𝑖𝑙𝑒𝑟), der Oberfläche des Boilers 

(𝐴𝐵𝑜𝑖𝑙𝑒𝑟), der Wasserinhalt (𝑉𝐵𝑜𝑖𝑙𝑒𝑟) und der prognostizierte Warmwasserverbrauch 

(𝑄𝑉𝑒𝑟𝑏𝑟𝑎𝑢𝑐ℎ). 

 

Abgebildet wird das System durch folgende Bedingungen: 

𝑇𝐵𝑜𝑖𝑙𝑒𝑟(𝑡) ≥  𝑇𝑚𝑖𝑛               

𝑇𝐵𝑜𝑖𝑙𝑒𝑟(𝑡) ≤  𝑇𝑚𝑎𝑥                

𝑄𝐼𝑛(𝑡) =  𝑃𝐵𝑒𝑧𝑢𝑔(𝑡) ∗ 𝜇𝐵𝑜𝑖𝑙𝑒𝑟           

𝑄𝑉𝑒𝑟𝑙𝑢𝑠𝑡(𝑡) =  𝐴𝐵𝑜𝑖𝑙𝑒𝑟 ∗  𝑐𝑜𝑛𝑠𝑡𝑉𝑒𝑟𝑙𝑢𝑠𝑡 ∗ (𝑇𝐵𝑜𝑖𝑙𝑒𝑟(𝑡) − 𝑇𝑈𝑚𝑔𝑒𝑏𝑢𝑛𝑔)          

𝑇𝐵𝑜𝑖𝑙𝑒𝑟(𝑡) =  𝑇𝐵𝑜𝑖𝑙𝑒𝑟(𝑡 − 1) +
𝑄𝐼𝑛(𝑡)−𝑄𝑉𝑒𝑟𝑏𝑟𝑎𝑢𝑐ℎ(𝑡)−𝑄𝑉𝑒𝑟𝑙𝑢𝑠𝑡(𝑡)

𝑉𝐵𝑜𝑖𝑙𝑒𝑟∗𝑐𝑜𝑛𝑠𝑡𝑊−𝐾𝑎𝑝𝑎𝑧𝑖𝑡ä𝑡
  

 

Es gilt ∀ 𝑡 ∈  𝒯 für den gesamten Optimierungszeitraum. Dabei ist 𝒯 die Menge an viertel-

stündlichen Zeitschritten im Simulationsmodell.  

Der Warmwasserverbrauch von Einzelhaushalten schwankt im Modell zwischen 30l- und 

50l / Person, bei einer Abnahmetemperatur von 45°C. Für die Simulationen wird durch-

gehend ein Standspeicher „VS-EU-300“, mit 300l Speichervolumen und 6kW Heizleistung 

verwendet. 

Zur mathematischen Beschreibung des Systems verwenden wir die Modellierungs-Biblio-

thek „Pyomo“. Diese erlaubt es uns die technischen und wirtschaftlichen Randbedingun-

gen exakt zu definieren. Zur Lösung des Gleichungssystems verwenden wir den CPLEX-

Solver von IBM.  

 



Deliverable Nr. D.9 | Beschreibung der Algorithmen und Bewertung der Skalierbarkeit 62 

4.2 Ergebnisse (Flexibilität und Erlöse) 

4.2.1 Referenz Szenario 

Das Referenzszenario bildet das Heizverhalten von Nicht-optimierten Boiler Einheiten ab. 

Es wird geheizt, sobald die untere Temperaturbegrenzung erreicht wird, unabhängig vom 

Strompreis am Day-Ahead Markt. 

Alle Ergebnisse werden im Vergleich zum Referenzszenario evaluiert.  

4.2.2 DA 

Bei der reinen Preisoptimierung versucht der Optimierer, Strom möglichst günstig einzu-

kaufen (Abb. 47). Auf diese Weise können die Stromkosten gesenkt werden, ohne das 

Nutzverhalten negativ zu beeinflussen. In Zeitraum 1 ergibt sich eine Kostenreduktion 

um 6,9% bei einer Bezugserhöhung von 3,2%, in Zeitraum 2 (hochgerechnet auf ein 

Jahr) eine Kostenreduktion von 5,2% und einen Strom-Mehrverbrauch von 2,9%. 

 

 

Abbildung 51 Preisoptimierter Day-Ahead Fahrplan 

Die Boiler-Einheit wird hier vor prognostizierten Verbrauchsspitzen geladen (Abb. 48) 

 

Abbildung 52 Lade-/Entladevorgang einer optimierten Komponente 
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4.2.3 SRL + DA + ID 

Zusätzlich zur Preisoptimierung aus dem DA-Use-Case wird die flexible Energiemenge 

des gesamten Pools gesammelt (aggregiert) und am Sekundär-Regelenergiemarkt in 

Form von 4h-Strom-Produkten angeboten. 

 

 

Abbildung 53 RL-Liefergarantie durch Day-Ahead Einkauf 

 

Der DA-Fahrplan in Abb. 49 ergibt sich aus der DA-Preisoptimierung, dem Absichern des 

Angebots positiver Regelenergie durch DA-Einkauf und der Leistungsvorhaltung, welche 

das Zurückkehren zum ursprünglichen Fahrplan garantiert, wenn die prognostizierten Ab-

ruf entweder höher oder geringer ausfallen als erwartet. 

 

Die Lieferung der RL-Produkte wird folgendermaßen garantiert: 

Negative RL:  

• Bei jedem Angebot wird zeitgleich Kapazität im Speicher freigehal-

ten, um die Leistung eines maximalen Abrufes aufnehmen zu kön-

nen. 

• Eine Stunde nach jedem Angebot, wird diejenige Leistung am DA-

Markt eingekauft, die der Differenz von maximalem und erwartetem 

Abruf entspricht. So können unerwartet hohe Leistungsmenge am 

Intra-Day-Markt wiederverkauft und der Fahrplan eingehalten wer-

den (Abb. 50). 

• Wird weniger abgerufen als erwartet, so wird die Leistung am Intra-

Day Markt nachgekauft. 

 

 

Positive RL: 

• Bei jedem Angebot wird zeitgleich die maximal angebotene RL-

Leistung am DA-Markt eingekauft. Für den Fall eines ausbleibenden 

Abrufes, wird diese Leistung nicht zum Heizen verwendet und ga-

rantiert die Lieferung des Produktes (Abb. 51). 
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• Eine Stunde nach jedem Angebot, wird diejenige Leistung am DA-

Markt eingekauft, die der erwarteten abgerufenen Leistung ent-

spricht. So kann die nicht abgerufene Leistung am Intra-Day Markt 

wiederverkauft und der Fahrplan eingehalten werden.  

• Wird mehr abgerufen als erwartet, wird diese fehlende Leistung am 

Intra-Day Markt nachgekauft. 

  

  

Abbildung 54 Möglichkeit des Verkaufs von Leistung durch Leistungsvorhaltung 

In Abbildung 41 wird veranschaulicht, wie die Differenz zwischen angebotener und erwar-

teter Leistung eine Stunde später als DA-Einkauf reserviert wird. So kann ein Leistungs-

überschuss wieder ins Netz eingespeist werden.  

Die erwartete negative Regelleistung wird zur Veranschaulichung auf der Sekundärachse 

dargestellt. 

 

Abbildung 55 Lieferung der positiven RL wird durch Day-Ahead Vorkauf gewährleistet 

 

In Abbildung 51 sieht man, dass die eingekaufte Leistung am Day-Ahead Markt immer 

mindestens genauso groß ist, wie die angebotene positive Regelleistung. Kommt es nun 

zu einem Abruf in maximal angebotener Höhe, kann diese Leistung auf jeden Fall gelie-

fert werden.  
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In Abbildung 52 wird der Nachkauf von Leistung am Intra-Day Markt veranschaulicht. 

Während des 4-stündigen RL-Angebots kommt es anfangs zu einem unerwartet hohen 

Abruf (die Leistung wird eine Stunde später nachgekauft) und zu einem unerwartet nied-

rigen Abruf (die Leistung wird eine Stunde später nachgekauft). Der Nachkauf und -Ver-

kauf ist in jedem Fall durch die Leistungsvorhaltung abgesichert, der Fahrplan kann also 

auf jeden Fall gehalten werden. 

 

 

Abbildung 56 Darstellung des ID-Nachkaufes bei Prognose-Abweichungen 

 

In der Simulation verringert diese Optimierungsmethode die Kosten um 18,5% im 1. und 

13,6% in Zeitraum 2. Analog dazu erhöht sich der Strombezug um 24,4% im 1. und 

26,4% in Zeitraum 2. 

4.2.4 TRL + DA + ID 

Hier wird, analog zum Handel am SRL-Markt, die flexible Energie am Tertiären Energie-

markt angeboten. Da Abrufe auf diesem Markt viel unwahrscheinlicher sind als am se-

kundären RL-Markt, fallen auch die Erlöse geringer aus. 

Es zeigt sich, dass in diesem Use-Case bei einem höheren Rechenaufwand im Vergleich 

mit einer reinen DA-Optimierung kaum ein Mehrwert entsteht (siehe Anhang). 

Bei einer Kostenreduktion von 7,1% im 1. Und 5,5% in Zeitraum 2 (nur geringfügig mehr 

als bei einer reinen DA-Optimierung), führt die Optimierung zu einem Mehrverbrauch von 

Strom von 24,6% im 1. und 11,7% in Zeitraum 2. 

 

4.2.5 DA + ID 

Zusätzlich zum Handel an den RL-Märkten wird auch das Potential des Handels am ID-

Markt betrachtet. Für die Optimierung des Fahrplans verwenden wir Preis-Forecasts, die 

uns stündlich Preisinformationen für die jeweils 3 nächsten Stunden liefern. Bei günstig 

liegenden ID Preisen kann der Optimierer die eingekauften DA-Mengen auch verkaufen, 

und zu einem günstigeren Preis die verkaufte Energie am ID-Markt nachkaufen (Abb.52). 
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Abbildung 57 Ausnützen von kurzfristigen Preisschwankungen  

 

 

Abbildung 58 Durch die hohe Trading Frequenz erhöht sich auch die Heizfrequenz 

 

Durch die höhere Trading-Frequenz ergibt sich ein komplexeres Temperaurverhalten der 

Boiler Einheiten (Abb.53). 

Es ergibt sich dabei eine Kostenreduktion von 12,4% im Vergleich zum Referenzszenario. 
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gen RL-Abrufrate kaum mehr Einsparungen als die reine DA-Optimierung (6,9% im 1. 

Und 5,2% in Zeitraum 2), wobei durch die Leistungsvorhaltung der Stromverbrauch un-

verhältnismäßig stark ansteigt. 
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4.3.1 Zeitraum 1 

 

Abbildung 59 Kostenvergleich ZR1 

 

Abbildung 60 Verbrauchsvergleich ZR1 

 

Abbildung 61 Netzgebührenvergleich ZR1 

 

Abbildung 62 DA-Mengen-Vergleich ZR1 

 

In Zeitraum 1 können mit einer reinen Preisoptimierung (DA) die Kosten um 6,9% ge-

senkt werden. Der Strombezug und die Netzgebühren steigen dabei um 3,2%.  

Wird zusätzlich Sekundäre Regelleistung angeboten (SRL+DA+ID) verringern sich die 

Kosten um 18,5%. Der Strombezug erhöht sich dabei um 24,1%. Da beim Bezug von ne-

gativer Regelleistung verringerte Netzgebühren anfallen, verringern sich in diesem Use-

Case auch die Netzgebühren um 3,5%. 

Beim Angebot von Tertiärer Regelleistung (TRL+DA+ID) verringern sich die Kosten bei 

einem Mehrverbrauch von 24,6% um nur 7,1%, also kaum mehr als bei einer reinen DA-

Optimierung. Auch die Netzkosten erhöhen sich im Gegensatz zur SRl+DA+ID Optimie-

rung, und zwar um 3,3%. Der Grund ist die niedrige Abrufwahrscheinlichkeit, welche den 

Bezug von negativer RL zum Heizen des Boilers stark verringert. Dieser Use-Case bietet 
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daher im Vergleich zum Angebot am Sekundär-RL-Markt ein geringeres Potential zur Kos-

tenreduktion. 

4.3.2 Zeitraum 2 

 

 

Abbildung 63 Kostenvergleich ZR2 

 

Abbildung 64 Verbrauchsvergleich ZR2 

 

Abbildung 65 Netzgebührenvergleich ZR2 

 

Abbildung 66 DA-Mengen-Vergleich ZR2 

 

Die DA-Optimierung kann im Zeitraum 2 eine Kostenreduktion von 5,5% erwirtschaften. 

Hier steigen der Gesamtverbrauch und die Netzkosten um 2,9%.  

Das zusätzliche Angebot am Sekundär-RL-Markt führt zu einer Kostenreduktion von 

13,6%, bei einem Mehrverbrauch von 26,4% und einer Netzkostenreduktion von 5,3%. 

Der TRL+DA+ID Use-Case bleibt wiederum hinter den andern zurück. Bei einer Kostenre-

duktion von 5,5% (wiederum nur geringfügig mehr als bei reiner Preisoptimierung) stei-

gen die Strombezüge um 11,8% und die Netzgebühren um 2,9%. 
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Die Ergebnisse aus Zeitraum 2 wurden bei der Auswertung auf ein Jahr hochgerechnet. 

4.3.3 Zeitraum 3 

 

Abbildung 67 Kostenvergleich ZR3 

 

Abbildung 68 Verbrauchsvergleich ZR3 

 

Abbildung 69 Netzgebührenvergleich ZR3 

 

Beim stündlichen Trading am Intra-Day Markt können die Kosten um 12,4% gesenkt 

werden. Da hier keine Energie vorgehalten werden muss, ist dieser Use-Case im Ver-

gleich zum SRL und TRL Use-Case einfacher zu implementieren. 

4.4  Parametervariation 

4.4.1 Haushaltsgröße 

Für eine Bewertung des Potentials des Flex+ Konzepts ist es interessant zu betrachten, 

wie sich die Energiekosten und der Stromverbrauch für unterschiedliche Haushaltsgrößen 

verändern. Es zeigt sich, dass die prozentuellen Ersparnisse bei ca. 13% und Mehrver-

bräuche bei ca. 26% einpendeln (Abb. 65 und 66), das heißt das Potential zur Kosten-

senkung skaliert linear mit der Bewohnerzahl und damit mit dem Warmwasserverbrauch. 
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Bei der Betrachtung der Haushaltsgröße wurden Verbrauch und Boiler-Dimensionierung 

der Bewohnerzahl angepasst. 

 

Abbildung 70 Einsparung nach Personen 

 

Abbildung 71 Mehrverbrauch nach Perso-
nen 

4.4.2 Poolgröße 

Bei einer Variation der Poolgröße zeigt sich (ab einer Teilnehmerzahl von ca. 10) eben-

falls ein linearer Anstieg der Einsparungen und Mehrverbräuche. Auch hier pendeln sich 

die Einsparungen und der Mehrverbrauch bei 13% und 26% ein (Abb. 67 und 68). 

 

Abbildung 72 Einsparungen je Poolgröße 

 

Abbildung 73 Mehrverbrauch je Poolgröße 

4.4.3 CO-2 Vergleich 

Zusätzlich zur Minimierung der Kosten ist auch eine Minimierung der CO2 Emissionen ein 

interessanter Anwendungsfall. Hier wird möglichst emissionsarm Strom eingekauft 

(Abb.69). 
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Abbildung 74 Einkauf von emissionsarmen Bio-Strom 

Es zeigt sich hier, dass eine Reduktion der CO2-Emissionen zu einem höheren Strombe-

zug und dadurch auch zu höheren Netzkosten führt. Bei der Optimierung wurden die 

CO2-Emissionswerte aus dem Raum Österreich herangezogen. 
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Abbildung 75 DA-Kostenvergleich CO2 

 

Abbildung 76 DA-Verbrauch CO2 

 

Abbildung 77 Netzgebühren CO2 

 

Abbildung 78 Gesamtemissionen CO2 

 

In der Simulation konnte mit einem Standspeicher (300l und 6kW Heizleistung) bis zu ca. 

49,7kg CO2 oder ca. 8,2kg CO2/kW und Jahr im Vergleich zu einer nicht-optimierten Boi-

ler-Einheit eingespart werden.  

Bei einem Pool aus 30 Boiler-Komponenten entspricht das ca. 1,5t/Jahr. 
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Nachdem Day-Ahead-Preise auch in 15 Min.-Auflösung getradet werden können, wird 

hier als Sensitivitätsanalyse die mögliche Kosteneinsparung der 15 Min.-Preise im Ver-

gleich zu den stündlichen Preisen im Zeitraum von 1.11.2018-1.7.2019 analysiert.  

Es zeigt sich, dass die Verwendung der 15 Min.-Day-Ahead-Preise in der Simulation bis 

zu 150% mehr Erlöse erzielt, als die Optimierung mit stündlichen Preisen. Der Energiebe-

zug ändert sich dadurch nicht. Ob diese zusätzliche Kostenreduktion auch im Livebetrieb 

erzielt werden kann, wird im Zuge der Demos evaluiert werden. 

 

5 E-Mobility-Pool Optimierung 

Zur Modellierung und Optimierung des E-Mobility-Pools wurde ein lineares ganzzahliges 

Optimierungsprogramm angewandt. Das Ziel der Optimierung ist es, die einzelnen Lade-

vorgänge von Elektrofahrzeugen so zu steuern, dass sich minimale Gesamtkosten erge-

ben. Wie in Abbildung 79 gezeigt, besteht der E-Mobility-Pool aus 32 Ladesäulen, die sich 

an unterschiedlichen Bürogebäuden befinden. 

 

Abbildung 79: Graphische Darstellung des E-Mobility-Pools. 

Die Ladesäulen erlauben unterschiedliche Ladeleistungen, die in Tabelle 19 erfasst sind. 

Tabelle 19: Ladeleistungen der Ladesäulen. 

Anzahl der Ladesäulen Ladeleistungen in kW 

4 22 

12 11 

16 3.7 

In diesem Kapitel wird eine einfache und umfassende Charakterisierung eines E-Mobility-

Pools entwickelt, um gesteuerte Ladevorgänge von Elektroautos in einem einzelnen linea-

ren Optimierungsalgorithmus effizient zu koordinieren. 

5.1 Methode 

Die Grundidee des vorgeschlagenen Verfahrens besteht darin, die Ladevorgänge von Elekt-

rofahrzeugen als virtuelle Batterien mit variabler Kapazität und begrenzter Input- und Out-

put Leistung zu beschreiben. Die mathematische Formulierung virtueller Batterien ermög-

licht die optimale Zuordnung der Energieflüsse des E-Mobility-Pools durch ein lineares Op-

timierungsmodell. 
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Ein Ladevorgang eines Elektrofahrzeugs lässt sich in dieser Optimierung mit sieben Werten 

definieren: Der minimale und der maximalen Input-Leistung (𝑝𝑚𝑖𝑛
𝐸𝑉

 bzw. 𝑝𝑚𝑎𝑥
𝐸𝑉 ), dem An-

steckzeitpunkt (𝑆𝐸𝑉), dem Absteckzeitpunkt (𝐷𝐸𝑉), der zu ladende Kapazität (𝐸𝐸𝑉) dem 

Ladewirkungsgrad (𝜂𝐸𝑉) und den Standby-Verluste (𝑝𝑙𝑜𝑠𝑠
𝐸𝑉 ). Die Bedingungen, die die tech-

nischen Eigenschaften eines Ladevorganges liefern sind in folgenden Gleichungen mathe-

matisch beschrieben. 

𝑠𝑜𝑐
𝑆𝐸𝑉
𝐸𝑉 =  0             (Bedingung 1) 

𝑠𝑜𝑐
𝐷𝐸𝑉
𝐸𝑉 = 𝐸𝐸𝑉            (Bedingung 2) 

0 ≤ 𝑠𝑜𝑐𝑡
𝐸𝑉 ≤ 𝐸𝐸𝑉            ∀ 𝑡 ⊆ [𝑆𝐸𝑉 , 𝐷𝐸𝑉]  (Bedingung 3) 

𝑝𝑚𝑖𝑛
𝐸𝑉 ⋅ 𝜎𝑡

𝐸𝑉 ≤ 𝑝𝑡
𝐸𝑉 ≤ 𝑝𝑚𝑎𝑥,𝑡

𝐸𝑉 ⋅ 𝜎𝑡
𝐸𝑉     ∀ 𝑡 ∈ 𝒯   (Bedingung 4) 

𝑠𝑜𝑐𝑡
𝐸𝑉 =  𝑠𝑜𝑐𝑡−1

𝐸𝑉 + (𝜂𝐸𝑉 ⋅ 𝑝𝑡
𝐸𝑉 − 𝑝𝑙𝑜𝑠𝑠

𝐸𝑉 ) ⋅ Δ𝑡    ∀ 𝑡 ∈ 𝒯   (Bedingung 5) 

Wobei 𝑡 die Zeitschritte der Optimierung bezeichnet und 𝒯 die zu optimierende Periode 

darstellt. 

Die Optimierungsvariablen, die in diesem Fall vom Optimierungsalgorithmus definiert wer-

den, sind die Zeitreihe von der Ladeleistung (𝑝𝑡
𝐸𝑉), des Ladezustands der Batterien des 

Elektrofahrzeugs (𝑠𝑜𝑐𝑡
𝐸𝑉) und die binäre Variable (𝜎𝑡

𝐸𝑉). In Abbildung 80 ist ein Markt-

optimierter Ladevorgang eines Elektrofahrzeugs gezeigt. 

 

Abbildung 80: Marktoptimierter Ladevorgang eines Elektrofahrzeugs. 

Diese mathematische Formulierung stellt einen Ladevorgang dar. Eine Ladesäule kann be-

liebig viele Ladevorgänge durchführen mit der einzigen Bedingung, dass die Ladevorgänge 

sich zeitlich nicht überschneiden. In Abbildung 80 stellt die grüne Linie den Ladezustand 

eines Elektrofahrzeugs dar, wenn der Ladevorgang nicht gesteuert wird. Das Elektrofahr-

zeug wird in diesem an die Ladesäule angesteckt, wird geladen und dann bleibt das Elekt-

rofahrzeug angesteckt ohne geladen zu werden bis zum Absteckzeitpunkt. Im Gegensatz, 
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stellt die rote Linie der Ladezustand eines Elektrofahrzeugs dar, wenn der Ladevorgang 

erst vor das Abstecken mit maximaler Ladeleistung stattfindet. Diese zwei Funktionen be-

zeichnen die Kapazitätsgrenzen einer virtuellen Batterie. Die Flexibilität kann innerhalb 

dieser Grenzen aktiviert werden. In dieser Optimierung wird keine Einspeisung vom Elekt-

rofahrzeug ins Netz (Vehicle-to-Grid) erlaubt. 

Die Use Cases, die in diesem Kapitel berechnet und ausgewertet werden, wurden bereits 

in Kapitel 2 Use Cases und Annahmen beschrieben.  

Anschließend wird in diesem Kapitel eine Parametervariation durchgeführt, in der die La-

deleistungen der 32 Ladesäulen auf 22 kW erhöht werden. Ziel der Parametervariation ist 

auszuwerten, inwiefern eine erhöhte Ladeleistung die Ersparnisse bzw. das Mehrverbrauch 

des E-Mobility-Pools beeinflusst. 

Die Ergebnisse der Simulationen sind in EUR/kW (bezogen auf die Ladeleistung des ge-

samten Pools) und in EUR/kWh (bezogen auf den gesamten Verbrauch des Pools) darge-

stellt.  
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5.2 Ergebnisse (Flexibilität und Erlöse) 

In folgende Abbildungen werden die Ergebnisse der Simulationen des E-Mobility-Pools ge-

zeigt. Die Vergütungen für positive Regelenergie und die aktivierte positive Regelenergie-

menge werden gelb angezeigt, während in hell blau die Vergütungen für negative Re-

gelenergie und die aktivierte negative Regelenergiemenge gezeigt sind. Die Day-Ahead 

Markt Käufe (blau) bzw. Day-Ahead Markt Verkäufe (rot) stellen die Kosten der Energie 

und die Energiemenge dar. Die Intraday-Markt Käufe in orange und die Intraday-Markt 

Verkäufe in dunkel rot, stellen die Energiemenge und deren Kosten dar, die am Intraday-

Markt nachgekauft werden. Die Netzkosten und Abgaben werden in violett dargestellt. Die 

Gesamtkosten bzw. der Gesamtverbrauch werden schwarz angezeigt, während die Diffe-

renzen im Vergleich zum Referenzszenario der Gesamtkosten und des Gesamtverbrauchs 

grün angezeigt werden 

5.2.1 Referenz Szenario 

Das „Referenzszenario“ wird mit einem konstanten Stromtarif modelliert. Die physikali-

schen Parameter der Komponenten müssen hier, wie auch in den anderen Szenarien ein-

gehalten werden (z.B. die maximale Lade-Leistung einer Ladesäule etc.). Es werden also 

keine Marktsignale bei der Optimierung des Betriebs der einzelnen Komponenten betrach-

tet. Es ergibt sich so ein technisch optimaler Fahrplan mit den minimalen Energieverlusten 

und somit mit dem geringsten Energieverbrauch. Nachdem die Leistungsflüsse der einzel-

nen E-Autos vom Optimierungsalgorithmus bestimmt worden sind, wird der Fahrplan mit 

den echten Spotpreisen der europäischen Strommarktbörse (European Power Exchange, 

EPEX) - zu den jeweiligen Zeitpunkten bewertet. 

5.2.2 DA-Szenario 

Im Day-Ahead-Szenario wird die vom Netz bezogene und die ins Netz eingespeiste Energie 

ausschließlich in Abhängigkeit von den EPEX- Day-Ahead-Markt Spotpreisen optimiert. Die 

Energie wird daher bezogen, wenn die Day-Ahead-Markt Preise möglichst gering sind. Beim 

E-Mobility-Pool findet keine Einspeisung statt, da der Vehicle-to-Grid-Betrieb im Rahmen 

des Flex+ Projektes nicht betrachtet wird. In den folgenden Abbildungen (Abbildung 81, 

Abbildung 82, und Abbildung 87) sind die Ergebnisse des Day-Ahead-Szenarios in den bei-

den unterschiedlichen Zeiträumen gezeigt. 

Zeitraum 1 

In Abbildung 81 sind die Ergebnisse des Day-Ahead-Szenarios in Zeitraum 1 (01.10.2017 

– 30.09.2018) gezeigt. Die Gesamtkosten reduzieren sich um 1,81 % während der Ge-

samtverbrauch um 1,58 % steigt. Wenn die Parametervariation durchgeführt wird, in der 

die Ladeleistungen der 32 Ladesäulen auf 22 kW erhöht werden, dann reduzieren sich die 

Gesamtkosten um 2,4 % während der Gesamtverbrauch um 1,7 % steigt. Die detaillierten 

Ergebnisse sind in Tabelle 23 und Tabelle 24 zusammengefasst. 
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Abbildung 81: Case Study E-Mobility-Pool - Day-Ahead-Zeitraum 1 

Zeitraum 2 

Die Ergebnisse des zweiten Zeitraumes (01.11.2018 – 30.06.2019) wurden auf ein Jahr 

hochskaliert (Abbildung 82). Die Gesamtkosten reduzieren sich in diesem Fall um 2,08 % 

während der Gesamtverbrauch um 1,87 % steigt. Wenn die Parametervariation durchge-

führt wird, in der die Ladeleistungen der 32 Ladesäulen auf 22 kW erhöht werden, dann 

reduzieren sich die Gesamtkosten um 2,59 % während der Gesamtverbrauch um 2,29 % 

steigt. Die detaillierten Ergebnisse sind in Szenario 2 

Tabelle 25 und Tabelle 26 zusammengefasst. 
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Abbildung 82: Case Study E-Mobility-Pool - Day-Ahead-Szenario Zeitraum 2 

5.2.3 SRL + DA + ID 

Im nächsten Use Case wird die vom Netz bezogene und die ins Netz eingespeiste Energie 

in Abhängigkeit von den EPEX- Day-Ahead-Markt Spotpreisen optimiert. Zusätzlich wird 

die flexible Energiemenge des gesamten Pools am Sekundär-Regelenergiemarkt in Form 

von 4h -Produkten angeboten. Jeder Abruf erfolgt mit einer gewissen Wahrscheinlichkeit 

und damit die Leistungs- Energievorhaltung möglich ist, werden auch Nachkäufe am Int-

raday-Markt betrachtet. Somit wird es ermöglicht, den Fahrplan einhalten zu können. In 

den folgenden Abbildungen (Abbildung 83 und Abbildung 84) sind die Ergebnisse des Use 

Case 2 in den Zeiträumen vor und nach der Markttrennung gezeigt. 

Zeitraum 1 

In Abbildung 83 sind die Ergebnisse des Use Case 2 in Zeitraum 1 (01.10.2017 – 

30.09.2018) gezeigt. Die Gesamtkosten reduzieren sich um 20,18 % während der Gesamt-

verbrauch um 4,99 % steigt. Wenn die Parametervariation durchgeführt wird, in der die 

Ladeleistungen der 32 Ladesäulen auf 22 kW erhöht werden, dann reduzieren sich die Ge-

samtkosten um 21,02 % während der Gesamtverbrauch um 5,23 % steigt. Die detaillier-

ten Ergebnisse sind in Tabelle 29 und Tabelle 30 zusammengefasst. 
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Abbildung 83: Case Study E-Mobility-Pool – Use Case 2 – Zeitraum 1 
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Zeitraum 2 

Die Ergebnisse des zweiten Zeitraums (01.11.2018 – 30.06.2019) wurden auf ein Jahr 

hochskaliert (Abbildung 84). Die Gesamtkosten reduzieren sich in diesem Fall um 12,82 % 

während der Gesamtverbrauch um 4,39 % steigt. Wenn die Parametervariation durchge-

führt wird, in der die Ladeleistungen der 32 Ladesäulen auf 22 kW erhöht werden, dann 

reduzieren sich die Gesamtkosten um 13,42 % während der Gesamtverbrauch um 4,06 % 

steigt. Die detaillierten Ergebnisse sind in Tabelle 31 und Tabelle 32 zusammengefasst. 

 

Abbildung 84: Case Study E-Mobility-Pool – Use Case 2 – Zeitraum 2 

5.2.4 TRL + DA + ID 

Im Use Case 3 wird die vom Netz bezogene und die ins Netz eingespeiste Energie in Ab-

hängigkeit von den EPEX- Day-Ahead-Markt Spotpreisen optimiert. Zusätzlich wird die fle-

xible Energiemenge des gesamten Pools am Tertiärregel-Regelenergiemarkt in Form von 

4h -Produkten angeboten. Jeder Abruf erfolgt mit einer gewissen Wahrscheinlichkeit und 

damit die Leistungs- Energievorhaltung möglich ist, werden auch Nachkäufe am Intraday-

Markt betrachtet. Somit wird es ermöglicht, den Fahrplan einhalten zu können. In den 

folgenden Abbildungen (Abbildung 85 und Abbildung 86) sind die Ergebnisse des Use Case 

3 in den Zeiträumen vor und nach der Markttrennung gezeigt. 

Zeitraum 1 

In Abbildung 85 sind die Ergebnisse des TRL+ DA+ID Use Cases im ersten Zeitraum 

(01.10.2017 – 30.09.2018) gezeigt. Die Gesamtkosten reduzieren sich um 1,84 % wäh-

rend der Gesamtverbrauch um 1,62 % steigt. Wenn die Parametervariation durchgeführt 
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wird, in der die Ladeleistungen der 32 Ladesäulen auf 22 kW erhöht werden, dann redu-

zieren sich die Gesamtkosten um 2,47 % während der Gesamtverbrauch um 1,77 % steigt. 

Die detaillierten Ergebnisse sind in Tabelle 33 und Tabelle 34 zusammengefasst. 

 

Abbildung 85: Case Study E-Mobility-Pool – Use Case 3 – Zeitraum 1 
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Zeitraum 2 

Die Ergebnisse von Zeitraum 2 (01.11.2018 – 30.06.2019) wurden auf einem Jahr hoch-

skaliert (Abbildung 86). Die Gesamtkosten reduzieren sich in diesem Fall um 2,08 % wäh-

rend der Gesamtverbrauch um 1,88 % steigt. Wenn die Parametervariation durchgeführt 

wird, in der die Ladeleistungen der 32 Ladesäulen auf 22 kW erhöht werden, dann redu-

zieren sich die Gesamtkosten um 2,59 % während der Gesamtverbrauch um 2,3 % steigt. 

Die detaillierten Ergebnisse sind in Tabelle 35 und Tabelle 36 zusammengefasst. 

 

Abbildung 86: Case Study E-Mobility-Pool – Use Case 3 – Zeitraum 2 

 

5.2.5 DA + ID 

Im Gegensatz zu den Use Cases 2 und 3 wird im DA+ID Use Case auch am Intraday-Markt 

optimiert. Die Optimierung erfolgt stündlich für die nächsten 24 Stunden. Die upgedateten 

Intraday-Markt Preise werden stündlich für die nächsten 3 Stunden mit viertelstündlicher 

Auflösung in die Optimierung als Input eingegeben. Dies ermöglicht es, kurzfristige Preis-

schwankungen am Intraday-Markt zu nutzen. Es werden also am Intraday-Markt die Tra-

des für die nächsten 3 Stunden getätigt. In Abbildung 88 sind die Ergebnisse des Use Case 

4 im dritten Zeitraum (06.01.2020 – 19.01.2020) gezeigt. 

DA als Referenzszenario 

Die Ergebnisse des Zeitraums 3 (06.01.2020 – 19.01.2020) wurden nicht auf einem Jahr 

hochskaliert, da die optimierte Zeitspanne nur zwei Wochen beträgt und daher eine Hochs-

kalierung nicht repräsentativ wäre. Die Gesamtkosten reduzieren sich in diesem Fall um 

0,47 % während der Gesamtverbrauch um 1,09 % steigt. Wenn die Parametervariation 
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durchgeführt wird, in der die Ladeleistungen der 32 Ladesäulen auf 22 kW erhöht werden, 

dann reduzieren sich die Gesamtkosten um 0,93 % während der Gesamtverbrauch um 

1,06 % steigt. Die detaillierten Ergebnisse sind in Tabelle 37 und Tabelle 38 und zusam-

mengefasst. 

 

Abbildung 87: Case Study E-Mobility-Pool - Day-Ahead-Szenario– Zeitraum 3 

 

DA+ID Optimierung 

Die Ergebnisse des DA+ID Use Cases in Zeitraum 3 (06.01.2020 – 19.01.2020) wurden 

nicht auf einem Jahr hochskaliert, da die optimierte Zeitspanne nur zwei Wochen beträgt 

und daher eine Hochskalierung nicht repräsentativ wäre. Die Gesamtkosten reduzieren sich 

in diesem Fall um 0,84 % während der Gesamtverbrauch um 1,18 % steigt. Wenn die 

Parametervariation durchgeführt wird, in der die Ladeleistungen der 32 Ladesäulen auf 22 

kW erhöht werden, dann reduzieren sich die Gesamtkosten um 1,18 % während der Ge-

samtverbrauch um 1,13 % steigt. Die detaillierten Ergebnisse sind in Tabelle 39 und Ta-

belle 40 zusammengefasst. 
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Abbildung 88: Case Study E-Mobility-Pool – Use Case 4 – Zeitraum 3 

 

5.3 Parametervariation 

Im „Minimal CO2 – Szenario“ wird in Abhängigkeit von den Emissionen die vom Netz bezo-

gene und die ins Netz eingespeiste Energie am EPEX- Day-Ahead-Markt optimiert. Die 

Energie wird daher bezogen, wenn die Day-Ahead-Markt Preise möglichst gering sind. Beim 

E-Mobility-Pool findet keine Einspeisung statt, denn der Vehicle-to-Grid-Betrieb im Rahmen 

des Flex+ Projekt nicht betrachtet wird. In Abbildung 89 sind die Ergebnisse des CO2 –

Reduktions- Szenarios in Zeitraum 2 gezeigt. 

5.3.1 Zeitraum 2 

Die Gesamtkosten steigen in diesem Fall um 4,43 % während der Gesamtverbrauch um 

4,65 % steigt. Die CO2 – Emissionen sinken aber um 6,25 %. Wenn die Parametervariation 

durchgeführt wird, in der die Ladeleistungen der 32 Ladesäulen auf 22 kW erhöht werden, 

dann erhöhen sich die Gesamtkosten um 4,45 % während der Gesamtverbrauch um 

4,59 % steigt. Die Emissionen sinken um 7,11 %. Die detaillierten Ergebnisse sind in Ta-

belle 27 und Tabelle 28 zusammengefasst. 
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Abbildung 89: Case Study E-Mobility-Pool - Minimal CO2 - Szenario – Zeitraum 2 

 

5.4 Zusammenfassung  

Abbildung 90 und Abbildung 91 fassen die Kostenreduktion und den Mehrverbrauch für 

die Use Cases 2 und Use Cases 3 mit und ohne Parametervariationen im ersten und zwei-

ten Zeitraum zusammen. Die Kostenreduktion und der Mehrverbrauch werden in dieser 

Grafik als Prozentsatz angegeben und stellen die prozentuale Differenz zwischen den An-

wendungsfällen und dem jeweiligen Referenzszenario dar. In folgende Abbildungen sind 

die Use Cases in absteigender Reihenfolge der prozentualen Kostenreduktion von oben 

nach unten sortiert. 

Abbildung 90 und Abbildung 91 fassen die Kostenreduktion und den Mehrverbrauch für 

die Use Cases 2 und Use Cases 3 mit und ohne Parametervariationen im ersten und zwei-

ten Zeitraum zusammen. Die Kostenreduktion und der Mehrverbrauch werden in dieser 

Grafik als Prozentsatz angegeben und stellen die prozentuale Differenz zwischen den An-

wendungsfällen und dem jeweiligen Referenzszenario dar. In folgende Abbildungen sind 

die Use Cases in absteigender Reihenfolge der prozentualen Kostenreduktion von oben 

nach unten sortiert. 
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Abbildung 90: Vergleich der erzielbaren Erlöse für den E-Mobility-Pool in Zeitraum 1 

 

 

Abbildung 91: Vergleich der erzielbaren Erlöse für den E-Mobility-Pool im Zeitraum 2 

Es ist ersichtlich, dass die höheren prozentualen Kostenreduktionen in beiden Zeiträumen 

in Use Case 2 „Sekundärregel-, Day-Ahead-und Intraday-Markt“ erzielt werden. Dies ist 

teilweise auf die reduzierten Netzkosten beim Bezug von negativer Regelleistung zurück-

zuführen. Es besteht eine gute Möglichkeit am SRL, Einnahmen für den noch benötigten 

Energieverbrauch zu erwirtschaften. Es ist ersichtlich, dass in Zeitraum 1 die Kostenre-

duktionen im allgemein größer sind als in der Zeitraum 2. Dies ist darauf zurückzuführen, 

dass in Zeitraum 2 der österreichische und der deutsche Markt getrennt wurden. Die 

Trennung hat für die österreichischen Energiemärkte zu einer Senkung der Volatilität der 

Preise geführt. 
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6 Wärmepumpen-Pool Optimierung 

6.1 Methode 

Zur Modellierung des Wärmepumpenpools und der Optimierung des Fahrplanes wurde die 

Methode der gemischt ganzzahligen Optimierung gewählt, mit dem Ziel, die Kosten zu 

minimieren. Dazu wurde die Optimierungsbibliothek pyomo verwendet. Einige der Ergeb-

nisse dieses Kapitels wurden im Paper "Marktteilnahme von EndkundInnenflexibilität 

durch Pooling“ am 16. Symposium Energieinnovation 2020 in Graz veröffentlicht. 

 

Abbildung 92 Interaktion der Komponenten im Modell 

Die Komponenten (Wärmepumpe, Gebäude, Heizwasser- und Warmwasserspeicher) wer-

den modular erzeugt und sind somit in verschiedenen Kombinationen verwendbar. Das 

Optimierungstool kann wählen, ob mit der erzeugten Wärmemenge direkt das Gebäude 

beheizt wird, oder entweder der Warm- oder der Heizwasserspeicher (Abbildung 92). 

6.1.1 Wärmepumpenmodell 

Zur Erstellung des Wärmepumpenmodells wurden vom Hersteller empirisch gewonnene 

Heizpolynome analysiert. Aus den durch lineare Regression gewonnenen elektrischen und 

thermischen Leistungspolynomen, welche von den Pumpenumdrehungen, der Wärme-

quellentemperatur, sowie von der Außentemperatur abhängen, wurde die Funktion Q(P) 

erstellt. Diese lässt sich nun annähernd linear beschreiben (Abbildung 93). Die Bedin-

gung, dass die Wärmepumpe im Realbetrieb nur in einem bestimmten Leistungsbereich 

betrieben werden kann, bringt die Notwendigkeit einer Binärvariable mit sich. Über die 

Umdrehungszahl der Wärmepumpe lässt sich also abhängig von Außen- und Wärmequel-

lentemperatur die elektrische beziehungsweise thermische Leistung berechnen. Da die 

linearisierte Kurve Q(P) außerdem nicht durch den Nullpunkt führt, muss die bereits ver-

wendete Binärvariable auch in die Geradengleichung, welche die thermische Leistung be-

schreibt, einfließen:  

𝑄(𝑃[𝑡]) = 𝑘[𝑡] ∗ 𝑃[𝑡] + 𝑑[𝑡] ∗ 𝐵𝑖𝑛𝑎𝑟𝑦[𝑡] 

𝑄(𝑃[𝑡])… 𝑝𝑟𝑜𝑑𝑢𝑧𝑖𝑒𝑟𝑡𝑒 𝑊ä𝑟𝑚𝑒𝑚𝑒𝑛𝑔𝑒, 𝑎𝑏ℎä𝑛𝑔𝑖𝑔 𝑣𝑜𝑛 𝑑𝑒𝑟 𝑎𝑢𝑓𝑔𝑒𝑛𝑜𝑚𝑚𝑒𝑛𝑒𝑛 𝐿𝑒𝑖𝑠𝑡𝑢𝑛𝑔 𝑓ü𝑟 𝑗𝑒𝑑𝑒𝑛  

𝑍𝑒𝑖𝑡𝑠𝑐ℎ𝑟𝑖𝑡𝑡 

𝑃[𝑡]… 𝑎𝑢𝑓𝑔𝑒𝑛𝑜𝑚𝑚𝑒𝑛𝑒 𝐿𝑒𝑖𝑠𝑡𝑢𝑛𝑔 𝑖𝑚 𝑍𝑒𝑖𝑡𝑠𝑐ℎ𝑟𝑖𝑡𝑡 𝑡 

𝑘[𝑡]…𝑊𝑖𝑟𝑘𝑢𝑛𝑔𝑠𝑔𝑟𝑎𝑑 𝑖𝑚 𝑍𝑒𝑖𝑡𝑠𝑐ℎ𝑟𝑖𝑡𝑡 𝑡 

𝑑[𝑡]…𝑉𝑒𝑟𝑠𝑎𝑡𝑧 𝑑𝑒𝑟 𝑄(𝑃) − 𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑠𝑖𝑒𝑟𝑢𝑛𝑔 𝑎𝑢𝑓 𝑑𝑒𝑟 𝑦 − 𝐴𝑐ℎ𝑠𝑒 

𝐵𝑖𝑛𝑎𝑟𝑦[𝑡]… 𝑏𝑒𝑠𝑐ℎ𝑟𝑒𝑖𝑏𝑡 𝑜𝑏 𝑑𝑖𝑒 𝑊ä𝑟𝑚𝑒𝑝𝑢𝑚𝑝𝑒 𝑒𝑖𝑛 − 𝑜𝑑𝑒𝑟 𝑎𝑢𝑠𝑔𝑒𝑠𝑐ℎ𝑎𝑙𝑡𝑒𝑛 𝑖𝑠𝑡 

𝑘[𝑡] stellt dabei den aufgrund der variierenden Temperaturen zeitlich veränderlichen Wir-

kungsgrad der Wärmepumpe dar.  
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Für die Jahressimulation wurden die Binärvariablen aufgrund der sonst zu langen Laufzei-

ten weggelassen, indem die Gerade durch den Nullpunkt gelegt wurde und eine kontinu-

ierliche Leistungsaufnahme angenommen wurde. 

 

Abbildung 93 Abhängigkeit der thermischen Leistung von der aufgenommenen elektri-
schen Leistung der Wärmepumpe 

Im Pool befinden sich sowohl modulierende Wärmepumpen als auch On-Off-Pumpen. Für 

jeden Zeitschritt wird eine Q(P)-Kurve erstellt, welche von der Außentemperatur und der 

Wärmequellentemperatur abhängt. Außerdem wird zur Leistungsbegrenzung für jeden 

Zeitschritt sowohl die Leistung bei der minimalen Umdrehungszahl als auch bei der maxi-

malen Umdrehungsanzahl berechnet, welche folglich ebenfalls von den gegebenen Tem-

peraturen in den jeweiligen Zeitschritten abhängt. In der Simulation kann man zwischen 

drei verschiedenen Wärmepumpen wählen, welche optional mit einem Heizwasser- und 

einem Warmwasserspeicher kombiniert werden können. Die Kennlinie für Q(P) ist zur Er-

wärmung des Warmwassers etwas anders als im Heizmodus. Um zwischen den Betriebs-

arten umschalten zu können aber gleichzeitig weitere Binärvariablen zu vermeiden, 

wurde eine die gesamte Leistung beschränkende Gleichung als Nebenbedingung einge-

führt: 

𝑃(𝑡)

𝑃𝑚𝑎𝑥(𝑡)
+

𝑃𝑑ℎ𝑤(𝑡)

𝑃𝑑ℎ𝑤𝑚𝑎𝑥(𝑡)
≤ 1 

𝑃(𝑡)… 𝑎𝑢𝑓𝑔𝑒𝑛𝑜𝑚𝑚𝑒𝑛𝑒 𝐿𝑒𝑖𝑠𝑡𝑢𝑛𝑔 𝑑𝑒𝑟 𝑊ä𝑟𝑚𝑒𝑝𝑢𝑚𝑝𝑒 𝑖𝑚 𝑍𝑒𝑖𝑡𝑠𝑐ℎ𝑟𝑖𝑡𝑡 𝑡 𝑖𝑚 𝐵𝑒𝑡𝑟𝑖𝑒𝑏𝑠𝑚𝑜𝑑𝑢𝑠 Heizen 

𝑃𝑚𝑎𝑥(𝑡) …𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑚ö𝑔𝑙𝑖𝑐ℎ𝑒 𝐿𝑒𝑖𝑠𝑡𝑢𝑛𝑔 𝑑𝑒𝑟 𝑊ä𝑟𝑚𝑒𝑝𝑢𝑚𝑝𝑒 𝑖𝑚 𝑍𝑒𝑖𝑡𝑠𝑐ℎ𝑟𝑖𝑡𝑡 𝑡, 𝑎𝑏ℎä𝑛𝑔𝑖𝑔 𝑣𝑜𝑛  
                    𝑊ä𝑟𝑚𝑒𝑞𝑢𝑒𝑙𝑙𝑒𝑛 𝑢𝑛𝑑 𝐴𝑢ß𝑒𝑛𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟 𝑖𝑚 𝐵𝑒𝑡𝑟𝑖𝑒𝑏𝑠𝑚𝑜𝑑𝑢𝑠 Heizen 
𝑃𝑑ℎ𝑤(𝑡) …𝑎𝑢𝑓𝑔𝑒𝑛𝑜𝑚𝑚𝑒𝑛𝑒 𝐿𝑒𝑖𝑠𝑡𝑢𝑛𝑔 𝑑𝑒𝑟 𝑊ä𝑟𝑚𝑒𝑝𝑢𝑚𝑝𝑒 𝑖𝑚 𝑍𝑒𝑖𝑡𝑠𝑐ℎ𝑟𝑖𝑡𝑡 𝑡 𝑖𝑚 𝐵𝑒𝑡𝑟𝑖𝑒𝑏𝑠𝑚𝑜𝑑𝑢𝑠  

                    Warmwasserbereitung 

𝑃𝑑ℎ𝑤𝑚𝑎𝑥(𝑡) …𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑚ö𝑔𝑙𝑖𝑐ℎ𝑒 𝐿𝑒𝑖𝑠𝑡𝑢𝑛𝑔 𝑑𝑒𝑟 𝑊ä𝑟𝑚𝑒𝑝𝑢𝑚𝑝𝑒 𝑖𝑚 𝑍𝑒𝑖𝑡𝑠𝑐ℎ𝑟𝑖𝑡𝑡 𝑡, 𝑎𝑏ℎä𝑛𝑔𝑖𝑔 𝑣𝑜𝑛 

  

Da viertelstündlich gemittelte Werte verwendet werden, ist garantiert, dass die Gesamt-

leistung der Wärmepumpe nicht überschritten wird. Voraussetzung zur praktischen Um-

setzung ist, dass die Betriebsmodi innerhalb dieser Viertelstunde nach Belieben wechsel-

bar sind.  

 

6.1.2 Gebäudemodell 

Eine besonders wichtige Komponente für das Modell und insbesondere für den geplanten 

Feldtest, stellt das zugrundeliegende Gebäudemodell dar:  
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Das Gebäudemodell wurde als vereinfachtes mathematisches Widerstands-Kapazitätsmo-

dell (RC) in Form von Zustandsraumgleichungen dargestellt. Dabei beschreibt der Zu-

standsvektor 𝑥, die Temperatur des Gebäudes, welches sich aufgrund des Eingangsvek-

tors 𝑢 und der modellierten physikalischen Gebäudeeigenschaften, ergibt.  

𝑥̇ = 𝐴 ∙ 𝑥 + 𝐵 ∙ 𝑢             →               𝑥(𝑡 + 1) = 𝛷(𝑡) ∙ 𝑥(𝑡) + 𝛤(𝑡) ∙ 𝑢(𝑡) 

Das ausgewählte Zustandsraummodell betrachtet 5 unterschiedlichen Temperaturzu-

stände 𝑥 der Bauteile Boden, Dach, Außenwände, interne Speichermassen und die resul-

tierende Raumtemperatur, sowie den dazugehörigen Eingangsvektor 𝑢 der im weitesten 

Sinne die zugeführte Wärmemenge (Heizenergie, solare Einstrahlung sowie interne ther-

mische Lasten) bzw. Randtemperaturen (Boden- und Umgebungstemperatur) darstellt. 

Die Zustandsraumdarstellung ermöglicht, basierend auf den Zustandstemperaturen des 

Zeitschrittes 𝑥(𝑡) und der in diesem Zeitschritt (beliebig) zugeführten Wärmemenge 𝑢(𝑡), 
die Zustandsänderungen bzw. die resultierende Zustandstemperaturen des nächsten 

Zeitschrittes 𝑥(𝑡 + 1) zu berechnen.  

Um die Anwendbarkeit des Gebäudemodells zu steigern, wurde eine Kalibrierungsme-

thode entwickelt, die das Gebäudeverhalten aus vergangenen Messgrößen bestimmt. 

Diese Kalibrierung wurde in MATLAB basierend auf der „lsqnonlin“ Methode (nichtlineare 

kleinste Fehlerquadrat Methode) durchgeführt. Sie versucht basierend auf einer Refe-

renzkurve (gemessene mittlere Gebäudetemperatur) und einer auf Messwerten basie-

rende geschätzte Heizenergiemenge, durch variieren der thermischen Kapazitäten und U-

Werte (siehe nachstehende exemplarische Formel der Fußbodentemperatur), die resultie-

renden Zustandstemperatur an die Referenzkurve anzunähern.  

𝐶𝐹
𝑑𝑇𝐹
𝑑𝑥

= (𝐴𝐹 (𝑈𝐹𝑜(𝑇𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑇𝐹) + 𝑈𝐹𝑖(𝑇𝐴𝑖𝑟 − 𝑇𝐹))) + 𝑄𝐹 

Abbildung 94 zeigt exemplarisch das Ergebnis einer Kalibrierung für 2 Tage. Das Modell 

berücksichtig für diesen Zeitraum vorliegende Eingangsgrößen wie Solarstrahlung, in-

terne Lasten und Umgebungstemperatur und versucht, so nahe wie möglich an die Refe-

renztemperatur des Gebäudes heranzukommen. Man sieht, dass der Algorithmus in der 

Lage ist, die errechnete mittlere Raumtemperatur in Bereich zwischen kältester und 

wärmster gemessener Raumtemperatur zu halten.  
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Abbildung 94: Beispielhaftes Kalibrierergebnis für den Zeitraum von 2 Tagen (resultie-

rende Gebäudetemperatur Plot1 und angelegt Eingangsgrößen Plot3) 

Dieser Kalibrierungsansatz wurde für folgende Anwendungsfälle verwendet. 

Vorabschätzung: Zum einen wurde versucht, eine Vorabschätzung des geeigneten Kalib-

rierungszeitraumes zu machen. Dazu wurde das Gebäudemodell mit Hilfe des Algorith-

mus kalibriert. Jedoch zeigten erste Tests, dass ein längerer Kalibrierungszeitraum mit 

einem unterschiedlichen Verlauf der Inputdaten genauere Ergebnisse liefern kann. Eine 

Voraussetzung für eine gute Kalibrierung ist, dass viele verschiedene Dynamiken in ein 

und demselben Kalibrierungszeitraum auftreten, wie beispielsweise eine längere Periode 

ohne Heizen im Winter, um zu sehen, wie schnell sich das Gebäude abkühlt. Nur so hat 

das Gebäudemodell genügend Informationen, um das weitere Verhalten aufgrund Wet-

terprognosen realistisch abzubilden. Genauere Daten, wie z.B. die reale zugeführte Wär-

memenge, welche mittels eines Wärmemengenzählers gemessen werden könnte, als 

auch die am Standort gemessenen Einstrahlungsdaten, sowie etwaige Parameter über 

das Nutzerverhalten könnten ebenfalls zu einem genaueren Ergebnis führen. Allerdings 

standen für diese zusätzlichen Parameter keine Referenzdaten zur Verfügung. Daher 

wurde versucht den Kalibrierungszeitraum auf 12 Wochen zu erhöhen, um die zuvor be-

schriebenen Vorteile auf das Verhalten des Gebäudemodells auszuschöpfen.  

Realer Feldtest: Für den realen Feldtest, wird ein kürzerer Kalibrierungszeitraum von 2 

Tagen gewählt, da auf reale Messdaten zurückgegriffen werden kann, wodurch das Ge-

bäudeverhalten gut vorausberechnet werden kann. Dahingehend ist eine „rollierende“ 

Optimierung basierend auf den letzten beiden Tagen angedacht, mit denen das Gebäude-

temperaturverhalten für die nächsten zwei Tage vorausberechnet wird.  

Die entwickelte Kalibrierungsmethode wurde als „Standalone Applikation“ bzw. als inte-

grierte Python Version für die weitere Verwendung zur Verfügung gestellt. Über eine da-

zugehöriges Konfigurationsdatei, lassen sich das zu betrachtende Gebäudemodell, die 

notwendigen Inputdaten, sowie alle Optionen des Kalibrieralgorithmus inklusive Validie-

rungsoptionen komfortabel verwalten.  
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6.1.3 Andere Speicher 

Die durch die Wärmepumpe erzeugte Wärmemenge 𝑄𝑡ℎ(𝑡) teilt sich wie folgt in die dem 

Warmwasserspeicher zugeführten Wärmemenge 𝑄𝑊𝑊(𝑡) und die dem Heizwasserspeicher 

zugeführten Wärmemenge 𝑄𝐻𝑊(𝑡) auf:  

𝑄𝑡ℎ(𝑡) = 𝑄𝑊𝑊(𝑡) + 𝑄𝐻𝑊(𝑡) 

Der Warm- und Heizwasserspeicher wurden auf herkömmliche Weise durch ein Kapazi-

tätsmodell abgebildet. Die enthaltene Energie setzt sich aus der enthaltenen Energie-

menge des vorhergehenden Zeitschrittes, der zugeführten Wärmemenge, der abgeführ-

ten Wärmemenge und den Verlusten zusammen. Die Verlustfaktoren wurden dabei je-

weils aus dem Energieausweis herangezogen. Die in den nachfolgenden Gleichungen 

grün markierten Variablen können vom Optimierungstool verändert werden, die in 

schwarz gehaltenen Variablen stellen unveränderliche Parameter dar.  

𝑇𝐻𝑊(𝑡) = 𝑇𝐻𝑊(𝑡 − 1) +
𝑄𝐻𝑊(𝑡) − 𝑄𝑓𝑙𝑜𝑜𝑟(𝑡) − 𝑄𝐻𝑊,𝑙𝑜𝑠𝑠(𝑡)

𝑚𝐻𝑊 ∙ 𝑐𝑝
 

𝑇𝑊𝑊(𝑡) = 𝑇𝑊𝑊(𝑡 − 1) +
𝑄𝑊𝑊(𝑡) − 𝑄𝑍𝑎𝑝𝑓(𝑡) − 𝑄𝑊𝑊,𝑙𝑜𝑠𝑠(𝑡)

𝑚𝑊𝑊 ∙ 𝑐𝑝
 

𝑇𝐻𝑊(𝑡) 𝑇𝑊𝑊(𝑡) …𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟 𝑑𝑒𝑠
𝐻𝑒𝑖𝑧𝑤𝑎𝑠𝑠𝑒𝑟

𝑊𝑎𝑟𝑚𝑤𝑎𝑠𝑠𝑒𝑟𝑠𝑝𝑒𝑖𝑐ℎ𝑒𝑟𝑠
 

𝑄𝐻𝑊(𝑡)

𝑄𝑊𝑊(𝑡)
… 𝑧𝑢𝑔𝑒𝑓üℎ𝑟𝑡𝑒

𝐻𝑒𝑖𝑧

𝑊ä𝑟𝑚𝑒𝑚𝑒𝑛𝑔𝑒
 

𝑄𝑓𝑙𝑜𝑜𝑟(𝑡) …𝑊ä𝑟𝑚𝑒𝑚𝑒𝑛𝑔𝑒, 𝑑𝑖𝑒 𝑖𝑛 𝑑𝑒𝑛 𝐹𝑢ß𝑏𝑜𝑑𝑒𝑛 𝑔𝑒ℎ𝑡 

𝑄𝑍𝑎𝑝𝑓(𝑡) …𝐹ü𝑟 𝑊𝑎𝑟𝑚𝑤𝑎𝑠𝑠𝑒𝑟𝑏𝑒𝑟𝑒𝑖𝑡𝑠𝑡𝑒𝑙𝑙𝑢𝑛𝑔 𝑎𝑏𝑔𝑒𝑧𝑎𝑝𝑓𝑡𝑒 𝑊ä𝑟𝑚𝑒𝑚𝑒𝑛𝑔𝑒 

𝑄𝐻𝑊,𝑙𝑜𝑠𝑠(𝑡)

𝑄𝑊𝑊,𝑙𝑜𝑠𝑠(𝑡)
…𝑊ä𝑟𝑚𝑒𝑣𝑒𝑟𝑙𝑢𝑠𝑡𝑒  

𝑚𝑊𝑊
𝑚𝐻𝑊…𝑊𝑎𝑠𝑠𝑒𝑟𝑖𝑛ℎ𝑎𝑙𝑡 𝑑𝑒𝑟 𝑆𝑝𝑒𝑖𝑐ℎ𝑒𝑟 𝑖𝑛 [𝑘𝑔] 

𝑐𝑝…𝑠𝑝𝑒𝑧𝑖𝑓𝑖𝑠𝑐ℎ𝑒 𝑊ä𝑟𝑚𝑒𝑘𝑎𝑝𝑎𝑧𝑖𝑡ä𝑡 

6.2 Ergebnisse (Flexibilität und Erlöse) 

Die in Kapitel 2 beschriebenen Use-Cases wurden für verschiedene Zeiträume simuliert. 

Für den Wärmepumpenpool wurden für jede Jahreszeit eine Woche simuliert, und auf ein 

Jahr hochskaliert, da die Rechenzeit für einen Pool von 30 Wärmepumpen und ein ganzes 

Jahr zu zeitintensiv gewesen wäre.  
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6.2.1 Referenzszenario 

 

Abbildung 95 Zimmertemperatur des Gebäudes für eine Winterwoche 

 

Abbildung 96 thermische Leistung der Wärmepumpe im Heizmodus in einer Winterwoche 

 

Abbildung 97 äußere Einflüsse auf das Gebäude in einer Winterwoche 

Abbildung 95 zeigt das Gebäudeverhalten einer Winterwoche unter der in Abbildung 97 

gegebenen Solarstrahlung und Außentemperatur. Außerdem ist in Abbildung 96 die zuge-

führte Heizleistung durch die Wärmepumpe abgebildet. Die Solareinträge tragen bei die-

sem Gebäude einen großen Anteil zur Erwärmung bei.  
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Abbildung 98 Temperatur Warmwasserspeicher und für das Heizen verwendete elektri-
sche Leistung 

Abbildung 98 zeigt das Verhalten des Warmwasserspeichers im Verhältnis zur aufgenom-

menen elektrischen Leistung der Wärmepumpe im Warmwassermodus. Der Temperatur-

abfall entsteht durch die abgezapften Warmwassermengen, am letzten Tag dieser Woche 

wird kein Warmwasser entnommen. 

6.2.2 DA 

 

Abbildung 99 aufgenommene Leistung der Wärmepumpe und zugehörige Day-Ahead-
Preise 

Im Szenario Day-Ahead wird nach Bezug zu Zeiten mit niedrigen Preisen optimiert. Dies 

ist in Abbildung 99 an den markierten Stellen ersichtlich. Zu diesen Zeitpunkten wird im 
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Referenzszenario (rot) wenig bezogen, im Day-Ahead-Szenario (blau) aufgrund der güns-

tigen Preise der Bezug zu diesen Zeiten erhöht bzw. von anderen Zeitpunkten dorthin 

verschoben.  

6.2.3 SRL+DA+ID 

 

Abbildung 100 Day-Ahead-Einkaufsmengen und Regelenergieangebote mit Day-Ahead-
Preisen 

In Abbildung 100 sind der Day-Ahead-Einkauf und die dazugehörigen Regelenergieange-

bote dargestellt. Zu Zeiten mit negativem Regelenergieangebot muss zur nächsten 

Stunde immer die Differenz zum maximalen Abruf am Day-Ahead-Markt eingekauft wer-

den, damit diese Menge im Bedarfsfall wieder verkauft werden kann, um auf die ur-

sprünglich gewünschte Temperatur zurückzukehren. Außerdem korrelieren die Day-

Ahead-Preise ebenfalls mit den am Day-Ahead-Markt eingekauften Mengen.  Es wird fast 

ausschließlich negative Regelenergie angeboten, was an den Einsparungen durch die re-

duzierten Netzkosten liegt.  

6.2.4 TRL+DA+ID 

Am TRL-Markt bestehen ähnliche Verhältnisse wie im SRL-Szenario. Da die Abrufwahr-

scheinlichkeiten allerdings als Null angenommen wurden, wird quasi keine Regelenergie 

angeboten. Daher wird angenommen, dass nichts abgerufen wird, und das Anbieten auf 

diesem Markt lohnt sich nur bedingt. 
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6.2.5 DA+ID 

 
Abbildung 101 Gesamtkosten in Prozent 

für Simulationszeitraum von zwei Januar-
wochen 2020 

 

 
Abbildung 102 Gesamtmenge in Prozent 

für Simulationszeitraum von zwei Januar-
wochen 2020  

 
Abbildung 103 Day-Ahead-Kosten in Pro-
zent für Simulationszeitraum von zwei Ja-

nuarwochen 2020 

 
Abbildung 104 Netzkosten in Prozent für 
Simulationszeitraum von zwei Januarwo-

chen 2020 

Der DA+ID-Use-Case wurde über einen Zeitraum von zwei Wochen für drei Haushalte si-

muliert. Dabei wurde im Vorhinein der Day-Ahead-Fahrplan, ebenso wie ein Referenz-

fahrplan, durch tägliche Optimierung erstellt. Im Anschluss, wird mit den wechselnden 

Intradaypreisen sich stündlich wiederholend optimiert, um kurzfristige Preisschwankun-

gen auszunutzen. In diesen beiden Wochen konnten durch DA-Optimierung nur circa 2% 

an Einsparungen erreicht werden, mit nachträglicher ID-Optimierung konnten diese Ein-

sparungen um circa weitere 5% erhöht werden. Durch den entstehenden Mehrbezug stei-

gen die Netzkosten um 2.6%, die reinen Energiekostenkosten, welche sich aus DA-

Einkäufen und den nachträglichen ID-Käufen und Verkäufen zusammensetzen, können 

sogar um bis zu 21% gesenkt werden.  
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Abbildung 105 An einem Tag im Simulationszeitraum bezogene Day-Ahead-Menge, nach-
gekaufte ID-Mengen und der sich daraus ergebende finale Fahrplan 

In Abbildung 105 sind der ursprünglich vorgesehene Day-Ahead-Fahrplan in blau, die 

Summe aller nachträglichen Einkäufe und Verkäufe am Intradaymarkt für jeden Zeit-

schritt in rot, und der sich daraus ergebende neue Fahrplan in grün aufgetragen. Die ge-

handelten Mengen jeweils in positive und negative Richtung entsprechen dabei ungefähr 

der bereits bezogenen Menge am Day-Ahead-Markt, der Intraday-Markt wird also inten-

siv genutzt. Am Ende entsteht durch den Handel ein Mehrverbrauch von 2%.  
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6.3 Parametervariation 

6.3.1 CO2 

Im Szenario der CO2-Minimierung wird mit dem Ziel optimiert, die CO2 Erzeugungsmen-

gen zu minimieren, indem zu Zeitpunkten eingekauft wird, an denen der österreichische 

Erzeugungsmix gerade einen hohen Anteil an Erneuerbaren beinhaltet. In Abbildung 106 

erkennt man, dass die Day-Ahead-Preise mit der CO2 Produktion korrelieren. Dies liegt 

daran, dass die Energiemengen der erneuerbaren Einspeisung zu diesen Zeitpunkten 

auch verbraucht werden müssen und daher am Markt günstige Preise entstehen.  

 

Abbildung 106 Strompreise und CO2-Mengen 

 

Abbildung 107 Bezogene Strommenge für das Day-Ahead- und das Szenario 

Abbildung 107 zeigt die Bezugsleistung aller Haushalte zu jedem Zeitpunkt. Die Bezugs-

zeitpunkte sind etwas anders, als im DA-Szenario, da die Preise nicht exakt mit den CO2-
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Mengen korrelieren. Mit den vier Wochen, welche beim Wärmepumpenszenario zur Simu-

lation verwendet wurden, lässt sich sowohl durch die Optimierung nach CO2 Mengen, als 

auch nach Kosten im Vergleich zum Referenzszenario eine Einsparung an Kosten und CO2 

erzielen (Abbildung 108). In den anderen Komponentenpools, welche im Gegensatz zum 

Wärmepumpenpool, der für exemplarische Wochen der verschiedenen Jahreszeiten simu-

liert wurde, über den gesamten Zeitraum betrachtet wurden, wurden geringfügig höhere 

Kosten erreicht. Bei der Optimierung nach CO2-Produktionsmengen lässt sich im Ver-

gleich zum DA-Szenario um 9,34 Prozent mehr CO2 einsparen, bei der Optimierung nach 

Preisen lassen sich 2,04 Prozent mehr an Kosten im Vergleich zum CO2-Szenario einspa-

ren.  

 

Abbildung 108 Kosten und CO2 von den drei verschiedenen Szenarien Reference, DA, 

CO2 
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6.4 Zusammenfassung 

6.4.1 Zeitraum 2 

 

Abbildung 109 Gesamtkosten Zeitraum 2 

 

Abbildung 110 Day-Ahead-Kosten Zeitraum 

2 

 

Abbildung 111 Netzkosten Zeitraum 2 

 

Abbildung 112 Mehrverbrauch Zeitraum 2 

Die Gesamtkosten lassen sich durch die Teilnahme am Day-Ahead-Markt um circa 6 Pro-

zent reduzieren, am SRL-Markt um 18 Prozent und am TRL-Markt lassen sich circa die-

selbe Reduktion erzielen wie am DA-Markt. Besonders sticht hervor, dass die Netzkosten 

bei Teilnahme am SRL-Markt stark reduziert werden können, der Profit entsteht haupt-

sächlich durch die reduzierten Netzkosten, aber auch durch den verringerten Einkauf am 

Day-Ahead-Markt, bei dem die fehlende Menge durch negative Regelenergieabrufe bezo-

gen werden. Insgesamt entsteht ein Mehrverbrauch von bis zu 2,5% bei allen Szenarien. 
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6.4.2 Zeitraum 1 

 

Abbildung 113 Gesamtkosten Zeitraum 1 

 

  

Abbildung 114 Day-Ahead-Kosten Zeitraum 

1 

 

 

Abbildung 115 Netzkosten Zeitraum 1 

 

Abbildung 116 Mehrverbrauch Zeitraum 1 

 

Zeitraum 1 weist ähnliche Einsparungen auf wie Zeitraum 2. Die Gesamtkosten können 

mit der Teilnahme von Sekundärregelenergie um bis zu 12 % reduziert werden. Dabei 

entsteht ein Mehrverbrauch von bis zu 3 %. Die meisten Einsparungen entstehen im 

Zeitraum SRL durch die Reduktion der Netzkosten, von bis zu 12 %.  
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7 Vergleich der Einnahmen und Flexibilitäten aller Pools 

 

Bei allen Pools können die größten Einsparungen durch die Teilnahme am Sekundärre-

gelenergie-Markt erzielt werden. Dies liegt unter anderem an den reduzierten Netzkosten 

beim Bezug von negativer Regelleistung. Außerdem bringt es eine gute Möglichkeit mit 

sich, für den ohnehin notwenigen Energiebezug, Einnahmen zu erwirtschaften. Die Teil-

nahme am Tertiärregelenergiemarkt lohnt sich in den durchgeführten Simulationen nur 

für die Batteriespeicher.  

Abbildung

 
117 bis Abbildung 120 zeigen die angebotenen Regelenergiemengen am Sekundär- und 

Tertiärregelenergiemarkt für die verschiedenen Komponenten, skaliert auf die Durch-

schnittsgröße einer Komponente im Pool und aufgespalten in positive und negative Re-

gelenergieangebote.  Meistens wird pro Komponente mit der Batterie am meisten am Re-

gelenergiemarkt angeboten. Dies liegt daran, dass die Batterie vollständig für die Erbrin-

gung von Regelenergie genutzt werden kann, ohne auf Komfortkriterien Rücksicht neh-

men zu müssen. Die zweitgrößte Regelenergiemenge wird von den Wärmepumpen ange-

boten, gefolgt von den Boilern und E-Autos. Die Mengen sind pro Jahr aufgetragen. Posi-

tive Regelenergie wird viel weniger angeboten, ebenso wie Produkte am Tertiärregelener-

giemarkt. Hier bildet der Batteriespeicher ebenso die einzige Ausnahme.  
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Abbildung 117 Angebotene negative Regelenergiemenge in einem Jahr pro Durch-
schnittskomponente im Zeitraum 1 vor der Markttrennung 

 

 

Abbildung 118 Angebotene positive Regelenergiemenge pro Komponente pro Jahr im 

Zeitraum 1 vor Markttrennung 
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Abbildung 119 Angebotene negative Regelenergiemenge pro Komponente pro Jahr im 

Zeitraum 2 nach der Markttrennung 

 

 

 

 
Abbildung 120 Angebotene positive Regelenergiemenge pro Komponente pro Jahr im 
Zeitraum 2 nach der Markttrennung 

 

Die prozentuellen Ersparnisse, sowie die absoluten Ersparnisse aller Komponenten wer-

den im Zeitraum 2, nach der Markttrennung, kleiner. Eine Ausnahme bilden in den Simu-

lationen die Wärmepumpen. Dies liegt einerseits daran, dass für Zeitraum 2 kein voll-
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Sommermonaten. Deshalb sind sowohl die absoluten, als auch die prozentuellen Erspar-

nisse im Zeitraum 2 größer, als im Zeitraum 1. Außerdem wurde für die Wärmepumpen 

im Gegensatz zu den anderen Komponenten nur wochenweise simuliert, daher können 

die Ergebnisse nicht vorbehaltslos verglichen werden. Es ist davon auszugehen, dass das 

Erlöspotential grundsätzlich in Zeitraum 2 geringer ausfällt als in Zeitraum 1.  

 

 

 

 
 
Abbildung 121 Absolute Einsparungen pro Komponente pro Jahr in Euro bei Teilnahme 

an verschiedenen Strommärkten für Zeitraum 1 

 

 

 
Abbildung 122 Absolute Einsparungen pro Komponente pro Jahr in Euro bei Teilnahme 
an verschiedenen Strommärkten für Zeitraum 2 
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Im Sekundärregelenergie-Markt und mit den Batteriespeichern lässt sich zwischen 65 

und 85 Euro pro Jahr. Auch bei den Wärmepumpen lässt sich zwischen 65 und 115 Euro 

pro Jahr. Dies wird gefolgt von den Boilern (47- 67€/Jahr). Am wenigsten lässt sich mit-

hilfe der Ladesäulen für Elektroautos einnehmen (38-57€). Dies liegt einerseits an den 

unterbrochenen Ladezeiten, sowie an der Lademenge pro Säule und Tag.  

 

 

 
Abbildung 123 Prozentuelle Einsparungen pro Komponente pro Jahr in Euro bei Teil-
nahme an verschiedenen Strommärkten für Zeitraum 1 

 

 

 
Abbildung 124 Prozentuelle Einsparungen pro Komponente pro Jahr in Euro bei Teil-
nahme an verschiedenen Strommärkten für Zeitraum 2 
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Abbildung 125 Einsparungen in Zeitraum 3 pro Komponente für zwei Wochen durch 
DA+ID Optimierung 

Der Use-Case DA+ID, bei welchem nach Day-Ahead-Preisen und anschließend stündlich 

nach Intraday-Preisen optimiert wird, wurde für zwei Wochen im Januar 2020 simuliert. 

In diesen beiden Wochen konnten für die verschiedenen Komponenten zwischen 0,09€ 

und 1,8€ im Vergleich zum jeweiligen Referenzszenario eingespart werden, was auf ein 

Jahr hochgerechnet eine Einsparung zwischen 2,34€ und 46,8€ bedeutet. Am wenigsten 

Ersparnisse konnten mit den Elektroautos erzielt werden, da für diese das zeitliche Ver-

schiebepotential sehr beschränkt ist. Bei den Batterien konnten die Ersparnisse im Ver-

gleich zur reinen Day-Ahead-Optimierung verdoppelt werden. Der Grund, dass sie trotz-

dem im Vergleich zu den Wärmepumpen und Boilern relativ niedrig erscheinen, besteht 

auch darin, dass bei den Batterien die auf dem DA+ID-Markt gehandelte Energie ist 

ziemlich groß, was zu hohen Batteriekosten (oder großen Aktivierungsfaktoren) führt.. 

Weiters ist in diesen beiden Winterwochen nicht viel PV-Erzeugung vorhanden, daher ist 

das Erlöspotential zu dieser Jahreszeit automatisch verringert. Die Erlöse in den beiden 

Wochen hängen bei den Wärmepumpen und Boilern auch von den Verbrauchsprofilen ab. 

Genauso, wie das Potential für den Handel bei den Batterien durch die niedrige Erzeu-

gung eingeschränkt wird, wird dieses durch den erhöhten Verbrauch der Wärmepumpen 

und Boiler im Winter erhöht. Der Vergleich in Abbildung 125 ist somit nicht für das ge-

samte Jahr aussagekräftig, sondern kann nur der Orientierung dienen.  

8 Aktivierung 

Die folgenden Ablaufdiagramme zeigen, in welcher Abfolge die verschiedenen Prozesse 

im Realbetrieb stattfinden und zu welchem Zeitpunkt die Daten spätestens für den 

nächsten Empfänger bereitstehen müssen. Genauer beschrieben werden die Einzelpro-

zesse im Deliverable D10.  

8.1 Ablaufdiagramm Vortag (SRL+DA+ID) 

Das nachfolgende Ablaufdiagramm zeigt die Interaktion zwischen den verschiedenen Sta-

keholdern im Flex+ Projekt für den Tag vor der tatsächlichen Energielieferung und dem 

Use-Case „Sekundärregelenergie & Day-Ahead-Handel“. „Tertiärregelenergie & Day-

Ahead-Handel“ besitzt ein analoges Ablaufdiagramm 

Zur besseren Übersicht sind jeweils nur ein Lieferant, Regelenergievermarkter und Kom-

ponentenpool dargestellt, in der Realität können aber mehrere dieser Stakeholder vor-

handen sein. Die Kommunikation zu den Einzelkomponenten und zu den Strommärkten 

ist ebenfalls zur besseren Übersicht nicht dargestellt. 

Der Ablauf wiederholt sich in dieser Form an jedem Kalendertag: 

1. Die Lieferanten berechnen Preisvorhersagen für die Day-Ahead Spotpreise für den 

nächsten Tag. Diese werden in Form einer Zeitreihe (15min- bzw. 1h-Werte) an 

die Flex+ Plattform übermittelt. Außerdem wird eine Zeitreihe mit den vorherge-

sagten stündlichen CO2-Emissionen für den nächsten Tag vom Lieferanten über-

mittelt. 
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2. Die Regelenergieanbieter schicken ihre Preisangebote und die dazu vorhergesag-

ten Abrufwahrscheinlichkeiten für die verschiedenen 4h-Produktzeitscheiben an 

die Flex+ Plattform. Dabei sind auch zwei oder mehr Preisangebote möglich (z.B. 

eines mit hoher und eines mit niedriger Abrufwahrscheinlichkeit). 

3. In der Flex+ Plattform werden die Preiszeitreihen für Day-Ahead und Regelener-

gie, sowie die Emissionszeitreihe an die jeweiligen Komponentenpools verteilt und 

weitergeleitet, je nachdem, welche der Pools Prosumer welcher Lieferanten bzw. 

Regelenergieanbieter haben. 

4. In den Komponentenpools wird basierend auf den vorhergesagten Preisen und Ab-

rufwahrscheinlichkeiten die optimale Regelenergieteilnahme berechnet. Die Re-

gelenergiemenge muss dabei in ganzen 4h-Produktzeitscheiben angeboten wer-

den und wird zusammen mit den Aktivierungskosten an die Flex+ Plattform über-

mittelt. 

5. Die Flex+ Plattform aggregiert die Regelenergiemengen aller Pools je Regelener-

gieanbieter und leitet sie an die jeweiligen Regelenergievermarkter weiter.  

6. Die Regelenergie wird von den Regelenergieanbietern an die APG vermarktet. Die 

Gate-Closure Zeit für SRL ist dabei 9:00 Uhr. Um 9:30 Uhr liegen die Ergebnisse 

der Auktion vor. Für TRL ist Gate-Closure um 10:00 mit den Ergebnissen um 

10:30. Die akzeptierten Regelenergiemengen werden an die Flex+ Plattform wei-

tergeleitet. 

7. Die Flex+ Plattform teilt die akzeptierten Regelenergiemengen auf die einzelnen 

Komponentenpools auf und leitet diese weiter. 

8. In den Komponentenpools wird der optimale Day-Ahead Fahrplan errechnet, ba-

sierend auf der Vorhersage der Day-Ahead Spotpreise und unter Berücksichtigung 

der akzeptierten, vorzuhaltenden Regelenergiemengen. An dieser Stelle werden 

außerdem die Eigeninteressen der Prosumer, sowie die prognostizierten CO2-

Emissionen für den nächsten Tag berücksichtigt. Der Day-Ahead Fahrplan (15min- 

bzw. 1h-Werte) wird an die Flex+ Plattform übermittelt. 

9. Die Flex+ Plattform aggregiert die Day-Ahead Fahrpläne aller Pools je Lieferant 

und leitet sie an die jeweiligen Lieferanten weiter. 

10. Die Lieferanten handeln die angeforderten Mengen am Day-Ahead Spotmarkt. Die 

Gate-Closure Zeit ist dabei 12:00 Uhr (EPEX) bzw. 10:15 Uhr (EXAA). 

11. Die Lieferanten schicken eine Bestätigung der tatsächlich resultierend Day-Ahead 

Spotpreise an die Flex+ Plattform, von wo aus sie weiter an die Komponenten-

Pools verteilt wird. 
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8.2 Ablaufdiagramm SRL-Regelenergieaktivierung (SRL+DA+ID) 

Nachfolgendes Ablaufdiagramm beschreibt den Prozess der Aktivierung der Regelenergie.  

 

1. Der Regelenergievermarkter erhält den Regelenergieabruf vom 

Übertragungsnetzbetreiber. Dieser wird im 2s-Takt an die Flex+ -

Plattform weitergeleitet. Gleichzeitig geben die Komponentenpools 

immer den derzeitigen Status der Komponenten bezüglich ihrer Ver-

fügbarkeit weiter. 

2. Die verfügbaren Komponenten werden nach ihrer Reihung auf der 

Merit-Order-Liste sortiert.  

3. Die Aktivierung wird für verschiedene Komponenten bestimmt. 

4. Anschließend gibt die Flex+-Plattform das Abrufsignal weiter, gleich-

zeitig wird die Regelenergie-Aktivierung auch an den Lieferanten 

weitergeleitet.  

5. Die einzelnen Komponenten werden aktiviert. 

6. Die Daten werden an das Datenkarussell der APG weitergeleitet. 
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8.3 Intradaynachkauf im Echtzeitbetrieb (SRL+DA+ID) 

Das nachfolgende Ablaufdiagramm beschreibt den Ablauf des Intradaynachkaufs bei von 

der Prognose abweichenden Regelenergieabrufen. 

1. Intraday Preise werden vom Lieferanten an die Flex+ -Plattform 

weitergegeben. Die Preise entsprechen realen Preisen, die sich aller-

dings jederzeit erhöhen können, wenn die um den vorigen Preis an-

gebotene Menge bis zum Entscheidungszeitpunkt bereits verkauft 

wurde. 

2. Die Intraday-Preise werden von der Flex+ - Plattform an die Pools 

weitergegeben.  

3. Die Pools bestimmen aus den abgewichenen Abrufen den Nachkauf. 

Diese Information wird wieder an die Flex+-Plattform weitergeleitet. 

4. Die Flex+- Plattform aggregiert die Nachkaufwünsche aller Pools, 

und leitet sie gesammelt an den Lieferanten weiter. 

5. Der Lieferant vermarktet die Intradaymengen, und gibt die Informa-

tion über die Zuschläge an die Komponentenpools weiter.  

6. Die Pools passen daraufhin ihre Fahrpläne an.   
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8.4 Nachträgliche Abrechnung (SRL+DA+ID) 

Das nachfolgende Diagramm zeigt, welcher Stakeholder welche Daten jeweils am ersten 

des Monats, für das letzte Monat nach dem Abruf/Lieferung, an den Lieferanten sendet, 

damit dieser die Rechnung legen kann und an den Kunden weiterleiten. Die Übertragung 

der Einsparungen durch die Teilnahme an den verschiedenen Märkten an den Kunden er-

folgt über das spezifische Tarifmodell. Auf mögliche Tarifmodelle wird in Deliverable D5 

eingegangen.  
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8.5 Ablaufdiagramm Vortag (DA + ID) 

Das nachfolgende Ablaufdiagramm zeigt die Interaktion zwischen den verschiedenen Sta-

keholdern im Flex+ Projekt für den Tag vor der tatsächlichen Energielieferung für den 

Use-Case „Intraday-Optimierung“. 

Zur besseren Übersicht sind jeweils nur ein Lieferant, Regelenergievermarkter und Kom-

ponentenpool dargestellt, in der Realität können aber mehrere dieser Stakeholder vor-

handen sein. Die Kommunikation zu den Einzelkomponenten und zu den Strommärkten 

ist ebenfalls zur besseren Übersicht nicht dargestellt. 

Der Ablauf wiederholt sich in dieser Form an jedem Kalendertag: 

1. Die Lieferanten berechnen Preisvorhersagen für die Day-Ahead Spotpreise für den 

nächsten Tag. Diese werden in Form einer Zeitreihe (15min- bzw. 1h-Werte) an 

die Flex+ Plattform übermittelt. Außerdem wird eine Zeitreihe mit den vorherge-

sagten stündlichen CO2-Emissionen für den nächsten Tag vom Lieferanten über-

mittelt. 

2. In der Flex+ Plattform werden die Preiszeitreihen des Day-Ahead-Marktes, sowie 

die Emissionszeitreihe an die jeweiligen Komponentenpools verteilt und weiterge-

leitet, je nachdem, welche der Pools Prosumer welcher Lieferanten haben. 

3. In den Komponentenpools wird der optimale Day-Ahead Fahrplan errechnet, ba-

sierend auf der Vorhersage der Day-Ahead Spotpreise. An dieser Stelle werden 

außerdem die Eigeninteressen der Prosumer, sowie die prognostizierten CO2-

Emissionen für den nächsten Tag berücksichtigt. Der Day-Ahead Fahrplan (15min- 

bzw. 1h-Werte) wird an die Flex+ Plattform übermittelt. 

4. Die Flex+ Plattform aggregiert die Day-Ahead Fahrpläne aller Pools je Lieferant 

und leitet sie an die jeweiligen Lieferanten weiter. 

5. Die Lieferanten handeln die angeforderten Mengen am Day-Ahead Spotmarkt. Die 

Gate-Closure Zeit ist dabei 12:00 Uhr (EPEX) bzw. 10:15 Uhr (EXAA). 

6. Die Lieferanten schicken eine Bestätigung der tatsächlich resultierenden Day-

Ahead Spotpreise an die Flex+ Plattform, von wo aus sie weiter an die Komponen-

ten-Pools verteilt wird. 
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8.6  Optimierung Echtzeit (DA + ID) 

Das nachfolgende Ablaufdiagramm beschreibt die stündlich stattfindende rollierende Int-

raday-Optimierung.  

1. Der Lieferant stellt der Flex+-Plattform aktuelle Intraday-Gebote 

aus dem Orderbuch in viertelstündlicher Auflösung für die nächsten 

drei Stunden zur Verfügung. 

2. Die Intraday-Preise werden an die Pools weitergegeben.  

3. Unter Berücksichtigung der zugeschlagenen Mengen wird für die 

nächsten 24h optimiert. Für den Zeitraum nach den ersten drei 

Stunden werden die bereits bekannten Day-Ahead-Preise verwen-

det. 

4. Mithilfe des Optimierungstools wird der Fahrplan erstellt und an die 

Flex+-Plattform geleitet. 

5. Dort werden die Fahrpläne aggregiert und an den Lieferanten wei-

tergeleitet. 

6. Dieser vermarktet die Mengen stündlich am Intradaymarkt. 

7. Zuschlagsmengen- und Preise werden über die Flex+-Plattform an 

die Komponentenpools geleitet. 

8. Die Komponenten führen die abgeänderten Fahrpläne aus.  
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8.7 Nachträgliche Abrechnung (DA + ID) 

Das nachfolgende Diagramm zeigt, welcher Stakeholder welche Daten am ersten des auf 

den Abruf/Lieferung nachfolgenden Monats an den Lieferanten sendet, damit dieser die 

Rechnung legen kann und an den Kunden weiterleiten. Die Übertragung der Einsparun-

gen durch die Teilnahme an den verschiedenen Märkten an den Kunden erfolgt über das 

spezifische Tarifmodell. Auf mögliche Tarifmodelle wird in Deliverable D5 eingegangen.  
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9 Fallback Szenario für Pools 

Da die bestehende Verbindung zur Flex+ Plattform nicht zu jedem Zeitpunkt gewährleis-

tet werden kann, werden Backup Lösungen für den Fall einer Unterbrechung benötigt, 

welche den Betriebsmodus der Einzelkomponenten definieren. 

Die Standardbetriebsmodi der einzelnen Komponenten werden ausführlich in Deliverable 

D8 beschrieben.  

Bei der Wärmepumpe liegt beispielsweise der Fahrplan ab 14:00 bzw. 16:00 für die 

nächsten 24h vor, bei einer Verbindungsunterbrechung wird der Fahrplan weiterhin 

selbstständig ausgeführt. Bei den Elektroautos wird bis zur Verbindungswiederaufnahme 

weiterhin Leistung zur Verfügung gestellt, wenn ein Fahrplan durch das Energiemanage-

ment vorliegt, wird dieser befolgt. Generell gilt, dass für alle Komponenten soweit wie 

möglich der weitere Fahrplan ausgeführt wird. Liegt kein Fahrplan mehr vor, wird jede 

Komponente im Standardbetriebsmodus frei betrieben. Eine allgemeine Vorgehensweise 

für alle Komponenten und Use-Cases wird in Abbildung 126 definiert.
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Abbildung 126 Komponentenunabhängige Vorgehensweise bei Verbindungsunterbrechung 
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10 Baseline 

10.1 Einleitung 

Bei der Erbringung von Sekundärregelreserve (SRR) bzw. Sekundärregelleistung (SRL) 

muss ein Nachweis darüber erbracht werden, dass der Anbieter explizit für den Abruf des 

Übertragungsnetzbetreibers (TSO, engl. Transmission System Operator) sein Verhalten 

geändert hat um die erwünschte Leistung zu erbringen. Die Referenz zum realen Verlauf, 

also das Verhalten eines Anbieters, wäre der Abruf nicht gekommen, nennt man die Ba-

seline. Für verschiedene Komponenten, die Regelenergie (RE) bereitstellen, gibt es auch 

verschiedene Arten die Baseline zu bestimmen. In den folgenden Kapiteln soll die Begriffe 

Regelenergie und das Konzept einer Baseline im Detail beschrieben werden, sowie auf 

verschieden Methoden zur Baseline-Erstellung für individuelle Komponenten eingegangen 

werden.  

Durch das Zusammenfassen von kleineren Komponenten zu sogenannten Komponenten-

pools können Prosumer gemeinsam SRL anbieten. Auch diese Pool-Lösungen werden im 

Folgenden diskutiert, sowie zusätzliche Erweiterungen zu bestehenden Konzepten für 

verschiedene Komponenten, wie Batteriespeicher oder Wärmepumpen, beschrieben. 

Dazu wurde unter anderem die Pool-Lösung als Schieberegister im Detail analysiert und 

auf seine Umsetzbarkeit und Flexibilität überprüft, sowie zusätzliche Optimierungen an-

gestrebt. 

10.1.1  Regelenergie 

Da innerhalb des Stromnetzes Energie nicht gespeichert werden kann, muss stets ein 

Gleichgewicht zwischen Erzeugung und Verbrauch bestehen (APG, 2019). Dazu bestehen 

unterschiedliche Regelmechanismen. einer davon ist die sogenannte Regelenergie. Re-

gelenergie wird, wie in Abbildung 128 dargestellt, je nach Abrufzeit in drei Unterkatego-

rien eingeteilt, Primär-, Sekundär- und Tertiärregelenergie. Positive Regelenergie wird 

dabei als zusätzliche Erzeugung oder Verringerung des Verbrauchs, negative Regelener-

gie als zusätzlicher Verbrauch oder als Senkung der Erzeugung definiert (Baetens et al., 

2016). 
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Abbildung 128 - Regelenergiearten 

In Österreich ist die Austrian Power Grid (APG) für die Beschaffung der Regelenergie über 

regelmäßige Ausschreibungsverfahren zuständig (APG, 2019). An diesen Ausschreibungs-

verfahren kann jeder teilnehmen, der die notwendigen von der APG festgesetzten techni-

schen Bedingungen erfüllt und einen entsprechenden Rahmenvertrag vorweisen kann. 

Um den entsprechenden Rahmenvertrag zu erhalten muss die Anlage alle 3 Jahre  

präqualifiziert werden (APG, n.d.). 

Am interessantesten für die in diesem Projekt verwendeten Komponenten ist Sekundär-

regelenergie. Diese muss automatisch innerhalb von 5 Minuten abrufbar sein (next-kraft-

werke, n.d.). Die von der APG momentan vorgehaltene Sekundärregelreserve beläuft sich 

auf +/- 200 MW. Das erste Mindestangebot eines Produkts beträgt 1 MW (APG, n.d.). Für 

jedes weitere Produkt beläuft sich das Mindestangebot auf 5 MW, darüber hinaus kann 

Sekundärregelreserve in 1 MW Schritten angeboten werden. 

10.1.2  Baseline 

Um die sogenannte genannte Präqualifizierung zur Regelenergiebereitstellung zu beste-

hen muss nachgewiesen werden, dass die angebotene Regelenergie tatsächlich zum ge-

wünschten Zeitpunkt erbracht wurde (Baetens et al., 2016). Dieser Nachweis wird an-

hand der sogenannten Baseline erbracht. Die Baseline, wie in Abbildung 129 dargestellt, 

gibt an, wie sich die Anlage verhalten hätte, hätte sie keine Regelenergie erbracht und ist 

somit der Nachweis der Effektivität der erbrachten Sekundärregelenergie (elia, 2019).  
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Abbildung 129 - Baseline (elia, 2019) 
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Die Baseline kann auf Basis von Messungen erstellt werden; dabei muss die vorgegebene 

Messtoleranz zur Maximalen Messspanne von 1,5 %, der vorgegebene Messintervall und 

die Messauflösung eingehalten werden (ENTSO-E, 2009). Die gesamte Übertragungsver-

zögerung darf dabei 5 Sekunden nicht überschreiten. Die Präqualifizierung kann entwe-

der für Einzelanlagen abgeschlossen werden, oder, für den Fall dass mehrere Anlagen zu-

sammengeschlossen werden um Regelenergie zu erbringen, für den gesamten Pool (elia, 

2019). Der Übertragungsnetzbetreiber (TSO) behandelt die Poollösung, als wäre es eine 

einzige Anlage. Die Funktion und Operation der Teilanlagen obliegt alleinig dem Betreiber 

des Pools (Baetens et al., 2016). 

 

10.2 Baseline Berechnungsmethoden  

10.2.1  Allgemein 

Es gibt unterschiedliche Methoden, je nach Anlagentyp, die Baseline zu bestimmen. All-

gemein dabei zu beachten ist die Einhaltung folgender Regeln (Baetens et al., 2016):  

- Die Berechnung muss transparent und nachvollziehbar sein 

- Mindestmaß an Genauigkeit, einschließlich mangelnder Vor-

kenntnisse und angemessenem Umgang mit wetterempfindli-

chen Ressourcen 

- Reproduzierbarkeit 

- Beachtung der Charakteristiken von unterschiedlichen Analgen-

typen 

- Einfachheit und geringer Rechenaufwand 

- Verhinderung von Spekulation 

Wie bereits erwähnt, können sowohl Einzelanlagen, als auch Poollösungen von mehreren 

Anlagen präqualifiziert werden, es sollte jedoch für jede Einzelanlage eine Baseline er-

stellt werden (Baetens et al., 2016).  

Bei konventionellen, nicht volatilen Anlagen folgt der Arbeitspunkt dem festgelegten 

Fahrplan. Wird Regelenergie abgerufen, so wird der ursprüngliche Fahrplan, ohne Re-

gelenergiebereitstellung, als Baseline herangezogen. Da volatile Erzeugungsanlagen 

großteils von äußeren Gegebenheiten wie Windgeschwindigkeit, Windrichtung und solarer 

Einstrahlung abhängig sind und somit nicht exakt vorhersagbar sind, muss die Baseline 

mithilfe von Messungen und/oder Simulationen erstellt werden.  

Das folgende Kapitel beschäftigt sich mit unterschiedlichen Methoden der Baselineerstel-

lung. Zu Beginn werden konventionelle Methoden für konventionelle Anlagen vorgestellt, 

im Anschluss folgen bestehende Baselinemethoden für volatile Kraftwerke, insbesondere 

Windkraftwerke.  

 

10.2.2  Konventionelle Erzeugungsanlagen 

In dem folgenden Abschnitt werden Methoden beschrieben, die für die Baselineerstellung 

von Kraftwerken verwendet werden, welche nicht von äußeren Einflüssen abhängig sind. 

Der Leistungsoutput dieser Kraftwerke ist somit lediglich von der Kraftwerksregelung ab-

hängig. Zu diesen Methoden gehören zum Beispiel Gaskraftwerke, Lauf- und Pumpspei-

cherkraftwerke, sowie Biomassekraftwerke.  

 

Nachweis nach Fahrplan  
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Der Fahrplan konventioneller Anlagen wird, um größtmöglichen Gewinn zu erwirtschaf-

ten, dem Strommarkt angepasst. Wird der Fahrplan einer Anlage für den Day Ahead 

(DA), oder den Intraday (ID) Markt erstellt und ist die Anlage in der Lage diesem Fahr-

plan exakt zu folgen, so kann dieser Fahrplan, zum Gate Closing, als Baseline herangezo-

gen werden (Baetens et al., 2016). Bei der Baselinemethode nach Fahrplan können zwei 

Methoden differenziert werden. Erstens die Fahrplanerstellung anhand von diskreten Stu-

fen, und zweitens basierend auf dem anlagentypischen Rampenverhalten der Regelstre-

cke. 

Wird der Forecast diskret als Rechtecksignal dargestellt, so kann die Anlage aufgrund des 

Regelverhaltens diesem Rechtecksignal nicht folgen (Baetens et al., 2016). Da die Anlage 

zum Abrufzeitpunkt jedoch bereits die volle Regelleistung bereitstellen muss, hat dies zur 

Folge, dass die Anlage bereits vor dem Abruf der Regelleistung den Arbeitspunkt erhöhen 

muss. Dieses Verhalten wird in Abbildung 130, auf der linken Seite dargestellt. Wie zu er-

kennen ist führt diese Methode zu Spitzen in der aktivierten Leistung.  

Dieses Fehlverhalten kann unterbunden werden indem, wie in Abbildung 130 auf der 

rechten Seite dargestellt, der Fahrplan bereits das Regelverhalten der Anlage beinhaltet. 

Durch Abänderung der diskreten Stufen in Rampen kann zu jedem Zeitpunkt die gefor-

derte Regelleistung erbracht werden.  

 

Übermittelung der Baseline mit kurzer Vorlaufzeit 

Der TSO kann, um das verfügbare Regelenergiepotential abschätzen zu können, einen 

Baseline Forecast über eine gewisse Zeitspanne im Voraus verlangen (Baetens et al., 

2016). Ist diese Zeitspanne gleich oder länger als die verlangte maximale volle Aktivie-

rungszeit der Regelenergiekategorie, so kann diese Vorhersage als Baseline herangezo-

gen werden. Dabei ist sicherzustellen, dass der Prognosealgorithmus eine ausreichende 

Genauigkeit aufweist, um den tatsächlichen Arbeitspunkt, und somit das tatsächliche Re-

gelenergiepotential, vorherzusagen. Um Spekulation zu verhindern muss der Forecast mit 

Messungen belegbar sein. Die Messungen müssen dem TSO kurz vor, oder mit dem 

nächsten Baseline Forecast übermittelt werden.  

Da die Anlage hierzu mit einer Genauigkeit von 97,5 % prognostiziert werden muss, wird 

diese Methode besonders bei nicht volatilen Anlagen angewendet (Kreutzkamp et al., 

2013). Bei einer ausreichenden Vorhersagegenauigkeit kann diese Methode jedoch auch 

für volatile Kraftwerke genutzt werden. 

 

Beibehalten des Arbeitspunktes zum Regelenergieabruf 

Eine weitere Methode der Baselineerstellung von konventionellen, trägen, Kraftwerken ist 

das beibehalten des momentanen Arbeitspunktes zum Zeitpunkt des Regelenergieabrufs 

(Baetens et al., 2016). Dabei wird davon ausgegangen, dass der momentane Arbeits-

punkt konstant geblieben wäre, wäre keine Regelenergie erbracht worden. Zu Ende der 

Regelenergiebereitstellung wird der Arbeitspunkt wieder an die Baseline zurückgeführt. 

Die erbrachte Regelenergie wird ab dem Moment gemessen, ab dem der Arbeitspunkt 

Abbildung 130 - Strommarktbasierte Erstellung der Baseline mit diskreten Stufen (links) 
und mit Berücksichtigung des Rampenverhaltens (rechts) (FutureFlow, 2016) 
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verändert wird, somit wird auch das Regelungsverhalten der Anlage berücksichtigt und 

mitgemessen. Alternativ zu momentan Werten können bei dieser Methode auch Minuten-

mittelwerte angewendet werden, um geringfügige Schwankungen auszugleichen.  

Diese Methode unterscheidet sich vom „Nachweis nach Fahrplan“ insoweit, dass die Ba-

seline unabhängig von der Prognose ist. Ist jedoch eine Leistungsänderung in der Prog-

nose vorhergesehen, so kann diese Methode nicht angewendet werden. Aus diesem 

Grund eignet sich diese Methode besonders für Laufwasserkraftwerke und träge Kraft-

werke.  

 

10.2.3  Volatile Erzeugungsanlagen 

Für volatile Anlagen müssen je nach Anlagentechnik eigene Baselineberechnungsmetho-

den angewendet werden. Der jeweilige Nachweis ist insbesondere abhängig davon inwie-

weit eine Anlage steuerbar ist und wie die genau Prognosegüte ist.  

Bei Anlagen mit einer hohen Prognosegüte kann zum Beispiel der Nachweis nach Fahr-

plan angewendet werden.  

Weitere Nachweismethoden sind folgende:  

 

Nachweis nach möglicher Einspeisung  

Der Nachweis nach möglicher Einspeisung ist ähnlich dem Nachweis nach Fahrplan, mit 

dem Unterschied, dass nicht die Prognose der möglichen Erzeugung als Referenz für die 

Baseline herangezogen wird, sondern die tatsächlich mögliche Einspeisung (Jansen et al., 

2014). Über die Leistungskurve der Anlage kann ermittelt werden, um wie viel die Anlage 

gedrosselt wurde, und wie viel Regelenergie erbracht wurde. Hierbei kann, wie zuvor, so-

wohl nur negative Regelenergie, oder durch Leistungsvorhaltung sowohl negative, als 

auch positive Regelenergie angeboten werden. 

Vorteil dieser Methode ist, dass die Anlage, solange sie keine positive Regelenergie vor-

hält, das vollständige mögliche Erzeugungspotential ausschöpfen kann und die Energie-

verluste minimiert werden.  

 

 

Physikalisch – Probabilistisches Modell  

Eine weitere ist das physikalisch- probabilistische Modell, welches ursprünglich zur Ange-

botserstellung von Regelenergie entwickelt wurde (Jansen et al., 2014). Dabei wird eine 

mathematische Beschreibung der physikalischen Erzeugungsparameter erstellt. Mithilfe 

Abbildung 131 - Windkraft Baseline nach möglicher Erzeugung (Jansen et al., 2014) 
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dieses Modells kann auf die mögliche Leistung einer, oder mehrerer Anlagen geschlossen 

werden.  

 

10.3 Baselineberechnung für Wärmepumpen 

Zur Erstellung einer Baseline für einen Zusammenschluss von verschiedenen Wärmepum-

pen wurden von iDM als erstes zwei Konzepte als Lösung für den Pool vorgeschlagen. 

Der erste Vorschlag war eine Bestimmung der Baseline durch statistische Methoden aus 

Archivdaten. Die zweite vorgeschlagene Lösung war die Bestimmung über einen Refe-

renzpool, der nicht für die RE-Bereitstellung verwendet wird.  

Anschließend wurde jedoch in Zusammenarbeit von iDM, APG und World-Direct eine Me-

thode für eine Pool-Lösung für Wärmepumpen entwickelt, die nun auch umgesetzt wer-

den soll: 

Eine Unterteilung der Geräte soll in zwei Gruppen erfolgen – die OutPool2- und die In-

Pool-Geräte. Laufend sollen mittels Schieberegister die WPs aus dem InPool in den Out-

Pool und umgekehrt wechseln. […] Die ursprünglich angedachte Shift-Intervallzeit be-

trägt 15 Minuten.  

Der Arbeitspunkt soll dabei die Leistung der InPool-Geräte sein. Ein Shift erfolgt erst 

dann, wenn es eine RE-Anforderung gibt. Davor ist dieses Vorgehen nicht nötig. 

Durch den Schiebevorgang wird der Arbeitspunkt ständig angepasst. Das erfolgt durch 

eine Neuberechnung des Schieberegisters durch die Subtraktion der Arbeitspunktleistung 

der gerade hinausgeschobenen WP [Anm.: Dieser Wert wurde seit dem Hineinschieben 

konstant gehalten] und der Addition der Leistung der neu hineingeschobenen Pumpe. 

Es können auch mehrere Geräte gleichzeitig in oder aus dem Pool genommen werden, 

solange ihre Anzahl konstant bleibt. (P. Sumerauer (iDM), A. Wieser (iDM), C. Bacher 

(iDM), T. Ayoub (WD), R. Engelmair (APG), 2019) 

 

Das für dieses Projekt Flex+ gewählte Konzept für Wärmepumpen soll das Beibehalten 

des Arbeitspunktes zum Regelenergieabruf, auch Einfrieren des Arbeitspunktes genannt, 

sein. 

Durch die Mittelung aus den Messwerten der kurz zuvor erhaltenen Daten (z.B. 15 Se-

kunden) wird ein Arbeitspunkt errechnet, der als Referenzwert während des gesamten 

Regelenergieabrufs gilt. Die Mittelungszeit richtet sich in der Regel nach der technischen 

Einheit (TE). Ist die Leistung der TE sehr sprunghaft empfiehlt sich eine längere Mitte-

lungszeit als bei konstant bleibender Leistung. Im Prinzip könnte man, bei konstant blei-

benden Leistungen (z.B. = 0), die Mittelung auch weglassen. 

Zum Zeitpunkt des Abrufes wird der Arbeitspunkt eingefroren und die Anlage fährt auf 

den Dispatched-Wert (Arbeitspunkt (MW) + Leistungserhöhung/Reduktion APG (MW)). 

Bei Abrufende dient der eingefrorene Arbeitspunkt als Vorgabewert (Mayer, 2019). 

Durch diese, durchaus einfache, Vorgehensweise kann somit der individuelle Arbeitspunkt 

einer einzelnen Wärmepumpe erfasst werden. 

In Kapitel 10.7 wird aber zusätzlich ein Pool-Konzept erörtert, das an dieser Methode der 

Arbeitspunktbestimmung festhält, sie allerdings auf N beliebige Geräte erweitern lässt 

                                           

2 Die Bezeichnung OutPool wurde in diesem Dokument gewählt, obwohl die ursprüngliche Bezeichnung auf 

OffPool lautet. Da aber OffPool eventuell implizieren könnte, dass eine sich darin befindende WP gänz-

lich unbeeinflusst arbeiten darf und auch keinem Fahrplan folgt, wurde dieser Begriff geändert, um 

Verwirrung zu vermeiden und möglichen Konzeptänderungen vorauszugreifen. 
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um einen Gesamt-Arbeitspunkt des Pools zu jedem beliebigen Zeitpunkt feststellen zu 

können. 

 

Abbildung 132 – Konzeptionelle Darstellung zum Einfrieren der Baseline. 

 

10.4 Baselineberechnung für PV Anlagen 

10.4.1  Nachweis nach Fahrplan 

Der Nachweis nach Fahrplan funktioniert ebenso wie sie in Kapitel 10.2 erklärt wurde. Die 

Vorhersagegenauigkeit von PV Anlagen variiert mit den Wetterverhältnissen. An klaren 

und stark bewölkten Tagen ist die Vorhersagegenauigkeit größer als an leicht bewölkten 

Tagen, da die Wolkenbewegung, und somit Verschattung der Anlage, den PV Energieout-

put maßgeblich beeinflusst. Die Standardabweichung für einen 24 h Forecast variieren je 

nach Studie und Berechnungsverfahren zwischen 10,2 % und 36,9 %. Für einen 1 h be-

ziehungsweise 2 h Forecast beträgt die Standardabweichung 13 % (1 h) beziehungsweise 

18,7 % (2 h)(Das et al., 2018). Da die angebotene Regelenergie mit einer Sicherheit von 

97,5 % geliefert können werden muss, ist maximal eine Standardabweichung von 2,5 % 

zulässig. Aufgrund der geringen Vorhersagegenauigkeit kann die Nachweismethode nach 

Fahrplan zurzeit noch nicht angewendet werden. Abbildung 133 zeigt dennoch die theo-

retische Funktionsweise der Nachweismethode. 

Abbildung 133 - Nachweismethode nach Vorhersage (Kreutzkamp et al., 2013) 
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Als grüne Linie gezeichnet ist die tatsächliche Erzeugung an dem dargestellten Tag, als 

blaue und rote Linie die DA und ID Prognosen. Dabei zu erkennen ist, dass die mit 

97,5%-iger Sicherheit prognostizierten Mengen deutlich unter der tatsächlichen Erzeu-

gung liegen.  

Als grüner Block dargestellt ist die angebotene Regelenergie. Die blauen Blöcke stellen 

jene Energie dar, die basierend auf der DA Prognose am DA Mark angeboten werden 

kann. Der ID Forecast ist wie zu erkennen genauer als der DA Forecast, die gelben Blö-

cke zeigen somit jene Energie, die am ID Markt verkauft werden kann.  

In dieser Baselineberechnungsmethode wird der eingereichte Fahrplan der Anlage als Ba-

seline herangezogen, dies bedeutet, dass maximal jene Energie am Strommarkt angebo-

ten werden darf, die die Prognose in den folgenden 15 Minuten vorsieht. Dies bedeutet, 

dass jene Energie, die in der Prognose nicht vorgesehen war und somit auch nicht am ID 

Markt angeboten werden kann, abgeregelt werden muss. Die roten Blöcke zeigen jene 

abgeregelte Energie.  

 

10.4.2  Nachweis nach möglicher Erzeugung 

Eine weitere Möglichkeit der Baselineberechnung ist über die tatsächlich mögliche Erzeu-

gung der Anlage. Diese kann über den Maximum Power Point (MPP) Tracker des Wech-

selrichters an den Photovoltaikanlagesträngen erhoben werden. Der MPP Tracker variiert 

den Innenwiederstand um zu jedem Zeitpunkt jenen Arbeitspunkt zu setzen, bei dem der 

Leistungsoutput größtmöglich ist.  

Laut dem TOR Erzeuger Typ A, Version 1.1, müssen synchrone Kleinsterzeugungsanlagen 

unter 250 kW ihre maximalen Wirkleistungsabgabe bis zu 85 % reduzieren können (E-

Control, 2019). Nichtsynchrone Kleinsterzeugungsanlagen müssen ihre maximale 

Wirkleistungsabgabe auf Anfrage nur geringfügig reduzieren. Der MPP, sowie der tatsäch-

liche Arbeitspunkt des Wechselrichters können schlussendlich aus dem Wechselrichter 

ausgelesen werden. Die Differenz zwischen MPP und tatsächlichem Arbeitspunkt kann als 

Methode zum Nachweis der Baseline herangezogen werden.  

Die Version 1.1 der TOR Erzeuger Typ A trat mit 12.12.2019 in Kraft, die beschriebene 

Funktion muss daher in Zukunft in jedem Wechselrichter implementiert sein. Somit ist 

dieser Nachweismethode in Zukunft technisch möglich, solange die Kommunikationsge-

schwindigkeit zwischen TSO, Wechselrichter und BMS eine Reaktionsgeschwindigkeit von 

unter 5 Minuten aufweist.  

Vorteil dieser Variante gegenüber dem Nachweis nach Fahrplan ist, dass die Baseline 

nicht im Vorhinein als absoluter Werte definiert werden muss und somit keine mögliche 

erzeugte Energie abgeregelt werden muss.  

 

10.4.3  Nachweis nach dem Physikalisch – Probabilistisches Modell 

Eine weitere Möglichkeit der Baselineberechnung ist das Physikalisch – Probabilistisches 

Modell. Hierbei werden physikalische Modelle der Umgebung erstellt. Diese Modelle be-

stehen aus der solaren Einstrahlung, spezifischen Verschattung der einzelnen Anlagen, 

der Ausrichtung und Neigung der Modulflächen und der installierten Leistung der Anla-

gen.  

Mithilfe dieses Modelles gibt es zwei Möglichkeiten auf die mögliche Erzeugungsleistung 

einer Anlage zu schließen. Die erste Möglichkeit beinhaltet eine weitere Messung der So-

laren Einstrahlung, mithilfe eines Pyranometers. Über diese Messung und das Physika-

lisch – Probabilistisches Modell kann auf die momentan mögliche Erzeugung rückgerech-

net werden.  

Für die zweite Möglichkeit wird eine Anlage in unmittelbarer Nähe benötigt. Je näher die 



Deliverable Nr. D.9 | Beschreibung der Algorithmen und Bewertung der Skalierbarkeit 127 

beiden Anlagen beieinander liegen, umso genauer ist das Ergebnis der momentan mögli-

chen Erzeugung. Über die Erzeugungsleistung der einen Anlage wird schließlich auf die 

mögliche momentane Erzeugung der anderen Anlage rückgerechnet.  

Die Genauigkeit der Berechnung beider Methoden des Physikalisch – Probabilistisches 

Modell kann über einbeziehen von Wolkenbewegungen verbessert werden.  

 

10.5 Baselineberechnung für Batteriespeicher 

Bei Batteriespeichern ist zwischen der reinen Nutzung zur Regelenergiebereitstellung und 

der zusätzlichen Nutzung als Heimspeicher, zur Eigenverbrauchsoptimierung, zu unter-

scheiden. 

10.5.1  Regelenergiebereitstellung 

Der Leistungsoutput eines Batteriespeichers folgt dem vorgegebenen Wert des BMS und 

kann somit extern festgelegt werden. Dabei sicherzustellen ist lediglich, dass ausreichend 

Energie gespeichert ist, um dem vorgegebenen Wert folgen zu können.  

Die maximale Regelleistung des einzelnen Batteriespeichers ergibt sich dabei aus der für 

Regelenergie nutzbaren Kapazität und der Zeitspanne, für die die Regelenergie geliefert 

werden soll.  

𝑀𝑎𝑥𝑖𝑚𝑎𝑙𝑒 𝑅𝑒𝑔𝑒𝑙𝑙𝑒𝑖𝑠𝑡𝑢𝑛𝑔 =
𝑓𝑟𝑒𝑖𝑒 𝐾𝑎𝑝𝑎𝑧𝑖𝑡ä𝑡 𝑑𝑒𝑠 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠𝑝𝑒𝑖𝑐ℎ𝑒𝑟𝑠

𝑖𝑛𝑠𝑔𝑒𝑠𝑎𝑚𝑡𝑒 𝐴𝑏𝑟𝑢𝑓𝑧𝑒𝑖𝑡
 

Bei positiver Regelenergie ist die nutzbare Kapazität jene Energie, die im Batteriespeicher 

gespeichert ist. Bei negativer Regelenergie ist die nutzbare Kapazität gleich der absoluten 

freien Speicherkapazität.  

Als Regelenergie angeboten wird jene Energie, die nach Abzug der Batterie- und Wech-

selrichtereffizienz am Netzanschlusspunkt gemessen werden kann. Der Nachweis der Re-

gelenergie kann somit über die Batterieleistung, unter Berücksichtigung der Effizienz des 

jeweiligen momentanen Arbeitspunktes des Wechselrichters und des Batteriespeichers 

definiert werden. Der SoC des Batteriespeichers kann dabei, über An- und Verkauf am 

Strommarkt, so gesetzt werden, dass stets die angebotene Regelenergie auch erbracht 

werden kann.  

10.5.2  Eigenverbrauchsoptimierung und Regelenergiebereitstellung 

Wird der Batteriespeicher zusätzlich zur Eigenverbrauchsoptimierung verwendet, verän-

dert sich der SoC je nach internem Verbrauch oder Erzeugung. Es kann daher nur jene 

momentan freie Kapazität und jene Differenzleistung zwischen momentanem Arbeits-

punkt und Maximalleistung angeboten werden. Weiters besteht die Möglichkeit der Kapa-

zitätsvorhaltung, bei der ein Prozentsatz der Speicherkapazität für Regelenergiezwecke 

freigehalten wird. Durch die Vorhaltung an Kapazität wird jedoch die Eigenverbrauchsop-

timierung minimiert.  

Der Nachweis der Regelenergiebereitstellung wird in diesem Fall aus folgenden momenta-

nen Messpunkten errechnet: 

- Last 

- Erzeugung 

- SoC des Batteriespeichers bei Beginn des Regelenergieabrufs 

- SoC des Batteriespeichers zu Ende des Regelenergieabrufs 

Mittels dieser Messpunkte, den resultierenden Energieflüssen, der batteriespeicherspezifi-

schen Steuerung, den Standby Verlusten und der leistungsspezifischen Effizienzen von 

Lade- und Entladevorgängen, wird simuliert, wie sich der Batteriespeicher verhalten 
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hätte, wäre keine Regelenergie abgerufen worden. Die Differenz des tatsächlichen und 

des simulierten Batteriespeicherverhaltens kann als Nachweis der Regelenergiebereitstel-

lung durch den Batteriespeicher herangezogen werden. 

Dabei zu berücksichtigen sind folgende physikalische Zusammenhänge: 

 

𝑃𝑙𝑜𝑎𝑑… momentane Last (negativ) 

𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛… momentane Erzeugung (positiv) 

𝑃𝐵𝑒𝑠𝑠 𝑛𝑜𝑚… Nominale Batteriespeicherleistung 

𝑃𝐵𝐸𝑆𝑆… momentane Batteriespeicherleistung (nach Berücksichtigung der Effizienzen und 

dem SoC) 

SoC… momentaner Batteriespeicherzustand 

𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒… momentane Netzanschlussleistung ohne Regelenergiebereitstellung  

𝑃𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 > 0… Netzeinspeisung 

𝑃𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 < 0… Netzbezug 

𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒… Energiesumme während des Angebotszeitraums 

𝑃𝑔𝑟𝑖𝑑… momentane Netzanschlussleistung mit Regelenergiebereitstellung 

𝑃𝑔𝑟𝑖𝑑 > 0… Netzeinspeisung 

𝑃𝑔𝑟𝑖𝑑 < 0… Netzbezug 

𝐸𝑔𝑟𝑖𝑑… Energiesumme während des Angebotszeitraums 

𝑃𝑆𝑅𝑅… konstante Regelleistung <= 𝑃𝐵𝑒𝑠𝑠 𝑛𝑜𝑚 

𝑡0 … Beginn des Angebotszeitraums 

𝑡1 … Ende des Angebotszeitraums 

 

Baselineszenario: 

𝑃𝐵𝐸𝑆𝑆 =  min  (Δ(𝑃𝑙𝑜𝑎𝑑 ;  𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛), 𝑃𝐵𝐸𝑆𝑆,𝑛𝑜𝑚) 

𝑃𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = − 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑃𝐵𝐸𝑆𝑆 

𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = ∫ 𝑃𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡1

𝑡0

 

 

Regelenergieszenario: 

𝑃𝐵𝐸𝑆𝑆 = Δ(𝑃𝑙𝑎𝑜𝑑 ;  𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛)  ±  𝑃𝑆𝑅𝑅 

𝑃𝑔𝑟𝑖𝑑 = − 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑃𝐵𝐸𝑆𝑆 

𝐸𝑔𝑟𝑖𝑑 = ∫ 𝑃𝑔𝑟𝑖𝑑

𝑡1

𝑡0

 

 

Nachweis: 

𝑆𝑅𝑅 =  Δ(𝐸𝑔𝑟𝑖𝑑 ;  𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) 
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Durch die Eigenverbrauchsoptimierung und Speicherbewirtschaftung ändert sich der SoC 

mit jedem Zeitschritt. Mit dem SoC des Batteriespeichers ändert sich auch das Re-

gelenergiepotential. Aus diesem Grund sind exakte Last- und Erzeugungsprognosen not-

wendig um eine gleichzeitige Regelenergiebereitstellung und Eigenverbrauchsoptimierung 

garantieren zu können. Das Baselineszenario beginnt mit dem SoC des Batteriespeichers 

zu 𝑡0 und ist ein eigenständiges Szenario, das keinerlei Abhängigkeiten zu dem Re-

gelenergieszenario aufweist. Nach Erbringung der Regelenergie bedeutet dies jedoch 

auch, dass das weitere Verhalten der Anlage nicht dem vorhergesagten Verhalten folgen 

kann. Nicht der Vorhersage folgen zu können kann einerseits bedeuten, dass die angebo-

tene Regelenergie zu späteren Zeitpunkten nicht aufbringbar ist, oder andererseits kann 

es dazu führen, dass das Abweichen wiederum zu Regelenergiebedarf führt. Um wieder 

auf den Fahrplan zurückzukehren muss der SoC des Baselineszenarios daher zum Bei-

spiel über den ID Markt, wiederhergestellt werden.  

 

10.6 Das Schieberegister 

10.6.1  Grundlagen 

Das Konzept eines Schieberegisters (SR) beruht auf der Idee eines logischen Schaltwerks 

aus der Elektronik. Die benötigten Variablen für eine Umsetzung eines solchen Konzepts 

sind vor allem einen Speicherinhalt, die spezifische Länge des Registers und eine Clock, 

die die Schaltfrequenz bzw. Schaltperiode bestimmt.  

Im Normalfall arbeitet das SR nach dem Prinzip des First In First Out (FIFO). Das bedeu-

tet, dass das erste Element, welches in das Register geschoben wird, auch das erste ist, 

das es am Ende verlässt. 

10.6.2  Motivation 

Durch die Verwendung eines Schieberegisters können Komponenten als Bereitsteller von 

Regelenergie (RE) benutzt werden, die individuell betrachtet über begrenzte Flexibilität 

verfügen. Die Bereitstellung von RE in sogenannten Pools ist eine Lösung, in der kleinere 

RE-Leister die Möglichkeit vorfinden, durch Bereitstellung einer größeren Gesamtleistung 

am RE-Markt teilnehmen zu können. Das Anbieten von Sekundärregelenergie erfolgt am 

österreichischen Energiemarkt immer in 4-Stunden-Einheiten, und, wie bereits in Kapitel 

10.1 erwähnt, mit einem Mindestangebot von 1 MW. Somit kann eine einzelne Kompo-

nente, die elektrische Leistungen im unteren Kilowatt-Bereich aufweisen alleine keine RE 

bereitstellen, ein Pool aus vielen individuellen Komponenten allerdings schon. 

Eine auftretende Schwierigkeit ist allerdings, dass die Nutzung einer einzelnen Kompo-

nente engen Grenzen unterliegt und im Fall von Wärmepumpen (WPs) beispielweise eine 

Überheizung des Hauses unerwünscht ist, und auch die Wärmespeicher nur in gewissen 

Grenzen funktionieren. 

Durch das Einführen eines Schieberegisters können die Komponenten phasenweise akti-

viert und anschließend phasenweise wieder deaktiviert operieren. Dadurch könnte die zu 

erbringende Regelenergie auf alle Teilnehmer in einem Pool gleichmäßiger, und damit ef-

fizienter verteilt werden, sodass damit mehr RE angeboten werden kann, damit die 

Wahrscheinlichkeit eines RE-Abrufs, und folglich auch die Effektivität steigern könnten.  

Die möglichen Auswirkungen des Konzepts, alle verfügbaren Komponenten als Pool zu 

betrachten und mit einem Schieberegister zu aktivieren und deaktivieren sollen in diesem 

Dokument beleuchtet werden. 
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10.6.3  Anwendung auf Wärmepumpen 

Wie bereits anfangs skizziert wird das Schieberegister durch gewisse Variablen definiert, 

die eine exakte Beschreibung erst möglich machen. 

Diese Variablen setzen sich in dem hier beschriebenen Fall im speziellen aus 

den Wärmepumpen i, 

der Anzahl der zur Verfügung stehenden WPs Nges, 

der Anzahl der aktivierbaren WPs im InPool Nin, bzw. der momentan nicht-akti-

vierbaren WPs im OutPool Nout, 

und der Schaltperiode T des Wärmepumpen-Pools 

zusammen. 

Hier sei auch angemerkt, dass die Anzahl der aktivierbaren Nin addiert mit der Anzahl der 

nicht-aktivierbaren WPs Nout im Normalfall die Anzahl der zur Verfügung stehenden WPs 

Nges ergibt. Ausnahmen würden entstehen, wenn man beispielsweise einen weiteren Pool 

einführen würde, denn dann wäre die Summe der Pumpen jene aller drei Pools. 

 

Auch das für die Wärmepumpen geplante SR arbeitet nach dem FIFO-Prinzip. Für das 

Wärmepumpen-Konzept handelt es sich hierbei um ein zirkular definiertes Schieberegis-

ter. Alle Elemente verbleiben im WP-Pool. Im weiteren Verlauf werden die folgenden Be-

zeichnungen verwendet: 

 

Gesamtpool:  Dieser Pool beschreibt alle sich im WP-Pool befindlichen Pumpen. 

Die Summe an Pumpen im In- und OutPool entspricht im Normalfall 

der Anzahl der Pumpen im Gesamtpool. 

InPool: Jene WPs, die sich im Gesamtpool befinden, und zusätzlich aktiviert 

(bzw. aktivierbar) sind. Aktivierung bedeutet, dass sie Regelenergie 

bereitstellen. 

OutPool: Jene WPs, die sich im Gesamtpool befinden, aber zum Zeitpunkt der 

Messung nicht für den Regelenergie-Abruf aktiviert werden und ent-

weder autark und unbeeinflusst laufen dürfen oder einem OutPool-

Fahrplan folgen. 

 

 

 

Abbildung 134 - Konzeptionelle Darstellung des Schieberegisters für Wärmepumpen i. 

 

Für den Normalfall würde das bedeuten, dass sich eine einzelne Wärmepumpe immer für 

eine Dauer 
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𝐭 = 𝐍𝐢𝐧 ∙ 𝐓   

im InPool befindet. 

Das beste Verhältnis zwischen der Größe des InPools zu Gesamtpool (Nin/Nges) und der 

Schaltperiode T kann mittels einer Optimierungsrechnung ermittelt werden. 

 

 

Das Verhältnis Nin/Nges 

 

Grenzfälle 

Wenn man die Grenzfälle betrachtet, dann sieht man, dass das Verhältnis Nin/Nges 

grundsätzlich maximal 1 ergeben kann, und zwar dann, wenn gilt: 

𝐍𝐢𝐧 =  𝐍𝐠𝐞𝐬 

Das würde bedeuten, dass alle verfügbaren Wärmepumpen auch im InPool wären. Dies 

würde aber nicht sehr sinnvoll erscheinen, da ein Schieberegister dann nicht benötigt 

würde. Auch der andere Extremfall, wenn also alle Pumpen im OutPool wären, ist zu ver-

werfen. Daher wird sich das Verhältnis jedenfalls in den Grenzen 

𝟎 <
𝐍𝐢𝐧
𝐍𝐠𝐞𝐬

< 𝟏 

bewegen. 

 

Optimierungsfaktoren 

Nachdem die Anzahl der WPs im Gesamtpool Nges als konstant bzw. als nicht veränderbar 

angenommen wird, weil es sich hierbei um die von den Prosumern bereitgestellten Ge-

räte handelt, die von Tag zu Tag variieren kann, wird nur Nin als variabel betrachtet. 

Um nun das Verhältnis zu optimieren werden zuerst Faktoren betrachtet, die Nin mög-

lichst maximieren wollen: 

• Die Gesamtleistung, welche für den RE-Abruf bereitsteht. Ein gro-

ßer InPool macht von allen WPs gleichzeitig gebrauch; dies ist ein 

treibender Faktor. 

• Eine Ausfallskompensation, die z.B. um die Fehlfunktion einer ein-

zelnen WP leichter kompensieren können, da mehrere WPs zu Verfü-

gung stehen und sich die Last aufteilt. Allerdings könnte man hier 

auch überlegen, defekte Geräte gänzlich aus dem Schieberegister zu 

nehmen. Dann wäre dieser Effekt nicht mehr relevant (siehe auch 

Ausfallsersatz im nächsten Absatz). 

• Das Bestreben der einzelnen Anbieter, auch RE anbieten zu kön-

nen. Für Prosumer, die sich außerhalb des InPools befinden ist die 

Abrufwahrscheinlichkeit null. Dieser Faktor ist nicht relevant, wenn 

Prosumer einen vergünstigten Energietarif erhalten, unabhängig da-

von, welcher Anteil der von ihnen zu Verfügung gestellten RE abge-

rufen wird. 

 

Faktoren, die Nin möglichst minimieren wollen: 

• Die Nachholeffekte durch das Schieberegister. Je länger sich ein 

Gerät im OutPool befindet, desto länger hat es auch Zeit sich auf 



Deliverable Nr. D.9 | Beschreibung der Algorithmen und Bewertung der Skalierbarkeit 132 

seinen Ausgangszustand vor dem letzten RE Abruf zurückzubewegen. 

Danach (z.B. Abkühlphase) kann wieder das volle Potential ausge-

schöpft werden. Dies gilt allerdings nur, wenn es keinen konkreten 

Fahrplan für die WPs im OutPool gibt. 

• Generelle Leistungs-/Temperaturoptimierung. Diese würden 

vor allem bei WPs im Temperaturbereich eine Rolle spielen. In der 

Theorie würde ein möglichst kurzer Wärmeabruf (mit maximaler Leis-

tung) das System am frühesten auch wieder ‚freigeben‘ und damit 

Zeit geben, den Ursprungszustand wieder einzunehmen, wenn es sich 

um einen Heizprozess handelt. Dieser Faktor fällt aber weg, wenn die 

WPs an einen Fahrplan gebunden sind. 

• Ausfallsersatz ist möglich, da sich mehrere WPs im OutPool befin-

den, die statt einer WP im InPool eingesetzt werden können. Die an-

deren InPool-Pumpen müssen die Leistung gar nicht ausgleichen. 

Ausfälle werden aber eher Ausnahmen darstellen, da wiederholte 

Ausfälle wahrscheinlich zu einem Ausschluss aus dem Pool führen 

(wie es auch die APG behandeln würde, wenn ein RE-Leister wieder-

holt seine Leistung nicht erbringt/erbringen kann). 

 

Mögliche externe Faktoren, die auch eine Rolle spielen könnten: 

• Leistungsfähigkeit der WPs durch (möglicherweise) diskrete Zu-

stände des Schaltverhaltens (ein, halbe Leistung, und aus). Dies steht 

aber in starker Verbindung mit der Schaltperiode und ist vernachläs-

sigbar, wenn die WPs beliebige Zustände annehmen können. 

 

 

Die Schaltperiode T 

 

Grenzfälle 

Bei einer Schaltperiodenwahl, die sehr viel länger ist als die mittlere Abrufdauer der TSO 

(bzw. sogar unendlich lang ist) dann gibt es quasi keinen Durchlauf durch das Schiebere-

gister. WPs, welche Teil des InPools sind, verbleiben dort, und WPs im OutPool kommen 

praktisch nie beim Regelenergieabruf zum Einsatz. Dieser Extremwert ist auf jeden Fall 

nicht dienlich. 

Bei einer Periodenwahl, die sehr viel kürzer als die mittlere Abrufdauer der TSO ist, ent-

steht ein hoher Durchsatz an Wärmepumpen durch den aktiven Pool. Bei fast unendlich 

hoher Durchsatzrate ist die Aufenthaltsdauer einer WP im InPool (und somit die Wahr-

scheinlichkeit RE zu erbringen) Nin/Nges. Diese Überlegungen werden aber von techni-

schen Limitationen begrenzt. Allerdings ist dieser Extremwert prinzipiell hilfreich, da ein 

hoher Durchsatz auf jeden Fall die gleichmäßige Verteilung an alle Prosumer verstärken 

könnte. 

 

Optimierungsfaktoren 

Faktoren, die die Schaltperiode T möglichst minimieren wollen (schnellere Schaltzeit): 

• Eine gleichmäßige und faire Verteilung der Regelenergie bei Ab-

ruf auf alle Prosumer. Gleichmäßige Verteilung bringt den Vorteil, 

dass alle RE-Erbringer sich die Last aufteilen und die Einschnitte in 
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die individuellen Liegenschaften der Prosumer nicht so stark bean-

sprucht werden (zu warm oder zu kalt). Die faire Verteilung ist nicht 

so stark relevant, wenn den Prosumern lediglich ein vergünstigter 

Stromtarif angeboten wird und individuelle Leistungen nicht relevant 

sind. Allerdings könnte dadurch eventuell der individuelle Energiever-

brauch steigen, was Mehrkosten für den Prosumer zufolge haben 

würde. 

• Bei hinreichend kleinen Schaltperioden (bzw. hoher Schaltfrequenz) 

entspricht die erbringbare Energiemenge die des Gesamt-

pools. In diesem Fall gibt es wenige bis keine Einbußen für die Pro-

sumer. Die Schaltperiode muss also hinreichend klein gegenüber der 

mittleren Abrufdauer vom TSO sein.  

Achtung: Die Gesamtleistung bleibt aber trotzdem limitiert, weil bei 

maximalem RE-Abruf eine geringere Anzahl von WPs zu Verfügung 

stehen; die Summe der Einzelleistungen des InPools ist damit be-

schränkt. 

 

Faktoren, die die Schaltperiode T möglichst maximieren wollen (langsame Schaltzeit): 

• Die Reaktionszeiten und Einschwingvorgänge der WPs werden 

hier eine bedeutende Rolle spielen. Von dem Eintreffen des Befehls 

bis zum Abruf der benötigten Leistung wird einige Zeit vergehen. Zu-

sätzlich kommen Einschwingvorgänge und Leistungsrampen in Spiel, 

die zu unerwünschten Fluktuationen in der Leistung führen. 

• Beim Startvorgang der Wärmepumpen wird sich ein geringerer Wir-

kungsgrad zeigen als bei konstant laufendem Betrieb, und dadurch 

auch ein höherer Verbrauch für die Prosumer durch ständiges Ein- 

und Ausschalten. 

• Häufiges Ein- und Ausschalten der WP führt auch zu größerer Ab-

nutzung, die an sich vermieden werden sollte. In weiterer Folge kön-

nen dadurch höhere Kosten und Wartungsarbeiten für den Prosumer 

entstehen. 

• Der rechnerische Aufwand für die ständige Änderung der In- und 

OutPool-WPs wird dadurch vergrößert. 

• Die Trägheit des Systems wird eine sehr schnelle Schaltperiode 

möglicherweise nicht zulassen. Dieser Effekt ist gegenüber den Re-

aktionszeiten und Einschwingvorgängen wahrscheinlich aber zu ver-

nachlässigen. 

 

10.6.4 Mögliche Erweiterungen der Theorie 

Verringerung der ‚bestmöglichen‘ Periode T durch eine Vervielfachung der Wärmepum-

pen, die pro Takt aus dem SR genommen bzw. dem SR hinzugefügt werden. Dadurch 

würde die mittlere Schaltperiode T‘ proportional zu n sinken: 

𝑇′ =
𝑇

𝑛
 

mit 
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n ∈ 𝑁>𝟘:   n = 1,  2,  3, … 

wobei n der Anzahl der WPs entspricht, die pro Schaltperiode aus bzw. in den InPool be-

wegt werden. 

 

Würde man beispielsweise zwei Wärmepumpen pro Periode entfernen und hinzufügen an-

statt einer einzigen, dann könnte man die ideale Schaltperiode halbieren – bei gleichblei-

bendem Durchsatz an WPs. 

 

Optimierung der erweiterten Theorie 

Faktoren, die die Anzahl n der WP pro Schaltperiode T maximieren wollen: 

• Eine Periodenverlängerung bei gleichem Durchsatz an Wärme-

pumpen ist möglich, da mehrere Pumpen auf einmal ausgetauscht 

werden. Dadurch könnten einzelne WPs entlastet werden. 

 

Faktoren, die die Anzahl n der WP pro Schaltperiode T minimieren wollen: 

• Fluktuationen werden verstärkt, denn je mehr Wärmepumpen in 

einem Zyklus ausgetauscht werden (den Pool wechseln), desto be-

deutender werden diese Effekte auf die Gesamtregelleistung. 

Dadurch wird die erbrachte Leistung auf jeden Fall instabiler und 

schwerer kontrollierbar. Der Einfluss des Effekts kommst stark auf die 

Leistung des Gesamtpools an, bzw. welcher Prozentsatz der Leistung 

des InPools ausgetauscht wird. 

 

10.6.5 Offene Fragen 

Derzeit gibt es noch einige offene Fragen in Bezug auf das Schieberegister, welche sich 

erst durch Erfahrungen in der Demo bzw. im Echtbetrieb vollständig beantworten lassen: 

• Wie viele Wärmepumpen werden wirklich zu Verfügung stehen? Wird 

der WP-Pool nur einen kleinen Teil der angebotenen RE ausmachen? 

• Wie groß ist der (Rechen-)Aufwand eines Schiebezyklus? Wenn diese 

nicht zu aufwendig sind, dann ist es auch möglich die Schaltfrequenz 

zu erhöhen. 

• Wie sehr fließt die Zeitkritikalität in das Konzept ein? Sind Ein-/Aus-

schaltvorgänge wirklich relevant und sind temporäre Schwankungen 

der Leistung akzeptabel, da es sich hierbei ja um den SRL-Markt han-

delt, bei dem Reaktionszeiten von 30s bis maximal 5min erlaubt sind. 

 

10.6.6 Vor- und Nachteile des Gesamtkonzepts 

 

Vorteile: 

• Bei geeigneter Schaltfrequenz werden alle WPs gleichmäßig bean-

sprucht und erhalten im Durchschnitt auch denselben Leistungsabruf 

. 
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• Das Schieberegister ermöglicht die prinzipielle Umsetzung des Pool-

Konzepts für das Projekt 

 

Nachteile: 

• Relativ starre Struktur des Schieberegisters. Möglicherweise stark 

unterschiedliche Leistungspunkte und -potentiale können nur schwer 

in das Konzept integriert und für stark verschiedene Prosumer aus-

gelegt werden. Man müsste prinzipiell fixe Schaltzeiten und eine fixe 

InPool-länge definieren, die die Pumpen eventuell höher belasten 

würden. 

• Potentielle Leistungseinbußen des Gesamtpool, da hier prinzipiell we-

niger Regelenergie angeboten werden kann, da der InPool kleiner ist 

als alle verfügbaren Pumpen. 

• Das Schieberegister könnte erhöhten Aufwand (logistischen, timing, 

etc.) darstellen. 

 

10.6.7 Mögliche Komplikationen bei der Integration des SR in bestehende Kon-

zepte 

 

Status der WPs beim RE-Abruf 

Man nehme an dieser Stelle zur Vereinfachung an, dass WPs nur die zwei diskreten Fälle 

‚ein‘ (=1) und ‚aus‘ (=0) vorzufinden sind, und ein negativer RE-Abruf erfolgt. Folgende 

Fälle können nun eintreten, wenn eine WP durch einen Schiebevorgang vom OutPool in 

den InPool kommt: 

1. Die Wärmepumpe i ist aus und wäre während ihrer Zeit im InPool aus 

geblieben (0 → 0). 

In diesem Fall kommt es zu einem RE-Abruf, weil der aktive Pool je-

denfalls RE bereitstellt.  

 

Abbildung 135 – Die Wärmepumpe ist bei Abruf aus, und 

wäre ausgeschaltet geblieben. 

Die Baseline wird aus den zuvor gemessenen Leistungsdaten (die 

hier alle null sind) erhoben. Der Wert wird gespeichert und zum Ar-

beitspunkt (AP) des InPools addiert. Der Arbeitspunkt der letzten 
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WP j = Nin im InPool, die in diesem Moment den Pool verlässt, wird 

subtrahiert. Eine AP-Anpassung findet statt. 

An dieser Stelle muss jetzt die Annahme getroffen werden, dass die 

neue WP i jedenfalls die Leistung der alten WP j ersetzen kann. 

Wenn das nicht der Fall ist, dann gibt es einen Leistungseinbruch 

des WP-Pool. Diesen müssten eventuell andere WPs des InPools er-

setzen. Wenn sie das nicht können, kann die RE-Leistung vom Pool 

nicht mehr erbracht werden. Bei Wiederholung kündigt die APG den 

RE-Leistungsvertrag mit dem Pool. Alternativ könnte man für solche 

Fälle zusätzlich RE vorhalten, um diese eintretenden Eventualitäten 

abzudecken. Dies würde aber andersherum bedeuten, dass man die 

übrigen WPs zuvor schon mit niedrigeren Leistungen betreiben 

müsste, was wiederum negative Auswirkungen auf die anbietbare 

Pool-Leistung hat. 

Die Pumpe i kann also die Leistung von j ersetzen. Ihre Baseline ist 

definiert (=0) und sie wird dem InPool hinzugefügt und die Pool-Ba-

seline angepasst. Jetzt wird sie eingeschalten. Die Abweichung von 

der eigenen Baseline wird als (negative) RE-Leistung gewertet. 

Wenn sie den Pool verlässt, wird sie abgeschaltet und heizt (ohne 

Fahrplan) autark und selbstständig. 

Dieser Fall ist sicherlich der erstrebenswerteste, da über den ge-

samten Zeitraum im InPool RE erbracht werden kann. 

 

2. Die Wärmepumpe i ist ein und wäre während ihrer Zeit im InPool ein 

geblieben (1 → 1). Es wird keine RE geleistet und somit bringt dieser 

Fall keine Vorteile. Allerdings bringt er auch keine Konflikte bei der 

Bemessung der erbrachten RE, weil die erbrachte RE auch die gemes-

sene ist (nämlich keine). Man muss aber beachten, dass die anderen 

Pumpen im Pool jenen Teil der RE leisten müssen, die WP i nicht leis-

ten kann, weil sie ja schon eingeschalten ist. Das heißt, sie blockiert 

einen Platz im SR, die eine Pumpe einnehmen könnte, die in dem 

Zeitraum RE erbringen kann. 

 

Abbildung 136 – Die Wärmepumpe ist bei Abruf ein, und 
wäre eingeschaltet geblieben. 

 

3. Die Wärmepumpe i ist aus, hätte sich aber während der Zeit im InPool 

eingeschaltet (0 → 1). Dieser Fall ist kein Problem, bzw. stellt kein 

reales Problem dar. Sobald die WP nämlich in den Pool kommt, ist sie 
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zwangsweise eingeschaltet. Demnach verschiebt sich ihr Zyklus und 

sie hätte eventuell früher abgeschaltet. 

 

Abbildung 137 – Die Wärmepumpe ist bei Abruf aus, 
hätte sich während dem Abruf aber eingeschaltet. 

 

4. Die Wärmepumpe i ist ein, hätte sich aber während der Zeit im InPool 

ausgeschaltet (1 → 0). Dieser Fall tritt ein, wenn das Potential der WP 

(z.B. Temperaturobergrenze erreicht) ausgeschöpft ist. 

Nun gibt es wiederum zwei Möglichkeiten: 

(a) Wenn die WP eingeschaltet bleibt, dann überhitzt sie potentiell, 

und zusätzlich wird von dem Modell aber nicht registriert, dass es 

sich um erbrachte RE handelt, weil die Baseline ja 1 ist. Es hat 

also zwei Auswirkungen, die nicht erstrebenswert sind.  

 

Abbildung 138 – Fall (a): Die Wärmepumpe ist bei Abruf 

ein, hätte sich aber während dem Abruf aber aus-
geschaltet. Während dem Abruf wird sie aber ge-
zwungen, eingeschaltet zu bleiben. 

 

(b) Wenn die WP sich doch ausschaltet, dann weicht sie auch von der 

Baseline ab, und erbringt damit theoretisch individuell positive 

Regelenergie, obwohl negative RE abgefragt wurde. Durch das 

Abschalten müssen die anderen WPs im InPool die nun fehlende 
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Leistung wiederum kompensieren, anstatt nach außen RE erbrin-

gen zu können.3 

 

 

Abbildung 139 – Fall (b): Die Wärmepumpe ist bei Abruf 

ein, hätte sich aber während dem Abruf aber aus-
geschaltet. Während dem Abruf darf sie sich aber 
bei Notwendigkeit ausschalten. 

 

Zusammenfassend lässt sich für dieses Szenario festhalten, dass solch ein Fall aufgrund 

der mehrfachen negativen Auswirkungen und Verfälschung der erbrachten Leistungen 

tunlichst ausgeschlossen werden sollte. 

 

Aus den oben angeführten Überlegungen heraus spielt demnach der Status der WP bei 

Eintritt in das Schieberegister eine entscheidende Rolle, da bei einem unerwünschten 

Status andere Pumpen für die fehlende RE aufkommen müssten. Demnach könnte man 

überlegen, WPs mit unerwünschtem Status temporär den Zugang zum InPool zu verweh-

ren. Zudem sollten man ermöglichen, dass an ihre Temperaturgrenzen stoßende WPs die 

Möglichkeit erhalten, den Pool zu verlassen, da sonst auch sie keine RE mehr leisten kön-

nen (bzw. im schlimmsten Fall sogar dem Pool entgegenwirken), welche andere Wärme-

pumpen im InPool kompensieren müssten. 

Zudem sei noch angemerkt, dass obige Abhandlung zum Status selbstverständlich auch 

für einen positiven RE-Abruf durchgeführt werden kann. Die Überlegungen sind analog 

und führen zum selben Resultat. 

 

10.6.8 Grundlegende Erkenntnisse und Fazit des Schieberegisters 

Basierend auf den vorherigen Beschreibungen lässt sich folgendes Fazit ziehen: Das 

Schieberegister ermöglicht es kleineren Komponenten Regelenergie anzubieten. Aller-

dings beschränkt es die verfügbare Flexibilität des Gesamtpools. 

Ein Teil dieser Flexibilität geht durch die fixe Länge des In-Pools und der Schaltperiode 

verloren. Diese sollten idealerweise aber dynamisch sein um sich auch an die RE-Abrufe 

anpassen zu können. Die Schaltperiode und die Länge des Registers allerdings ständig 

den Gegebenheiten anzupassen scheint relativ aufwendig zu sein. 

                                           

3 Diese Fallunterscheidung könnte man auch invers für den Fall 0 → 0 betrachten, wenn man davon aus-

geht, dass die untere Temperaturgrenze erreicht wurde (zu kalt) und sich die WP einschalten möchte. 
Das Effekte wäre dasselbe (unerwünschte) wie in 4(b) beschrieben. 
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Auch wenn das klassische Schieberegister implementiert wird, müssen zumindest ge-

wisse Faktoren, wie etwa der Status der WPs beim Eintritt in das Schieberegister berück-

sichtigt werden. Wenn dies nicht geschieht, dann könnte das zufolge haben, dass der 

Pool weit hinter seinem eigentlichen Potential zurückbleibt und die Rentabilität für Wär-

mepumpen stark sinkt. 

 

10.6.9 Datenanalyse von WPs im Bezug auf das SR 

Der Wärmepumpenhersteller iDM stellte Messdaten von 78 WPs von verschiedenen öster-

reichischen Standorten zu Verfügung. Diese wurden ausgewertet, um zu ermitteln wie 

sich die Wärmepumpen ohne äußere Einflüsse oder Steuerung verhalten. Aus den Resul-

taten können eventuell in Zukunft Rückschlüsse auf das mögliche Potential für RE-

Erbringung, auch in Bezug auf das unterschiedliche Verhalten im Laufe der Jahreszeiten, 

zu ermitteln. 

Die verfügbaren Daten beinhalteten Messungen des Datums und Uhrzeit, der Außentem-

peratur, der Temperatur des Pufferspeichers, der Temperatur des erwärmten Trinkwas-

sers, der aktuell vom Verdichter produzierten Heizleistung, und der vom Verdichter aktu-

ell aufgenommenen elektrischen Heizleistung. Die Messintervalle betrugen etwa 15 Se-

kunden und wurden zwischen 31.05.2018 und 01.06.2019 erhoben. 

Ein Datensatz musste aufgrund fehlender Messergebnisse für die elektrische Leistung der 

Pumpe verworfen werden. Da die Datensätze in sich zeitweise einige Lücken aufwiesen, 

wurden zusätzlich alle Events mit Lücken von über 3 Minuten am Stück vor der Analyse 

gefiltert um eine Verfälschung der Resultate zu verhindern. Das bedeutet, dass keine 

Aussage über Intervalle zwischen Events oder Anzahl der Events pro Monat getroffen 

wurden. 

Die Daten wurden als Boxplots dargestellt. Die orange Linie beschreibt den Median der 

jeweiligen Daten, während die Box vom unteren bis zum oberen Quartil reicht und somit 

jeweils 50 Prozent der Daten beinhaltet. Die Antennen verbinden die beiden beschriebe-

nen Quartile mit dem Minimum bzw. dem Maximum (ihre Länge entspricht 1.5-mal dem 

Interquartilsabstand). Ausreißer wurden in der Graphik der Übersichtlichkeit wegen nicht 

dargestellt. In Abbildung 140 findet man einen einzelnen, typischen Datensatz auf ein 

Jahr gesehen, und in Monate unterteilt. Auffällig ist insbesondere, dass die Werte sehr 

stark streuen, obwohl nur eine einzelne Einheit betrachtet wird. Zudem weist diese WP 

(wie auch viele andere) im Sommer ein stark anderes Verhalten im Vergleich zum restli-

chen Jahr. Diese Auswirkungen lassen sich auch bedingt in der Analyse aller Datensätze 

erkennen. 
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Abbildung 140 - Eine typischer Boxplot einer einzelnen Wärmpumpe über das Jahr ver-
teilt. 

 

Insgesamt wurden 77 Datensätze analysiert und daraus über 155 000 separate, vollstän-

dige Events erstellt, die jeweils vom Zeitpunkt des Einschaltens der WP (elektrische Leis-

tung >0) bis zum Ausschalten (elektrische Leistung wieder =0) reichen. Daraus konnte 

Information über die durchschnittliche Dauer eines Events, der durchschnittlich benötig-

ten elektrischen Energie pro Event, sowie der mittleren Leistung (errechnet) und dem 

Maximalwert der Leistung pro Event extrahiert werden. Die Ergebnisse wurden für alle 

Monate sortiert und sind in Abbildung 132 zu sehen. 

Bei einer oberen Abschätzung, dass im Jahr 2020 etwa 220 000 Wärmepumpen mit einer 

elektrischen Leistung unter 10kW in Österreich im Einsatz sein könnten (M. Hartl, 2016), 

einem gewählten Konfidenzintervall von 90% ergibt sich bei einer Stichprobengröße von 

77 Datensätzen ein maximaler Stichprobenfehler von 9.5%. Es ist durchaus bewusst, 

dass die Analyse der Daten keine umfassende ist und einige Aspekte, wie etwa die Wohn-

fläche, die Anzahl der Bewohner, der Energiewert, und andere Faktoren, nicht berück-

sichtigt wurden. Dennoch können die Daten einen guten Eindruck vermitteln, wie sich 

Wärmepumpen in Privathaushalten in Österreich verhalten. 

Betrachtet man die Dauer, die eine einzelne Wärmepumpe eingeschalten bleibt, so zeigt 

sich, wie erwartet, dass diese über das Jahr hinweg variiert. Während in den Sommermo-

naten die Dauer der Aktivierung gering ist, steigt diese in den Wintermonaten auf den 

zweieinhalbfachen Wert an. Durch die Änderung der Außentemperatur steigt auch der 

Wärmebedarf im Haus. Nachdem alle betrachteten Haushalte über einen Pufferspeicher 

verfügen, der auch für die Warmwasserproduktion verwendet wird, lässt sich die rege 

Nutzung in den Sommermonaten erklären. Eine Sortierung nach der Maximalleistung ha-

ben keine signifikanten Unterschiede in der Betriebsdauer zwischen Wärmepumpen mit 

verschiedenen Maximalleistungen (>5.5kW, 5.5-7.0kW, <7.0kW) ergeben. 

Die elektrische Energie, die pro Event benötigt wird, schwankt prinzipiell stark und ist na-

türlich von oben erwähnten Faktoren wie Größe der Wohnfläche, Anzahl der BewohnerIn-

nen und eventuell anderen Faktoren abhängig. Tendenziell zeigt sich aber, dass die Ge-

samtenergie der Events zwar in den Sommermonaten sinkt, die mittlere Leistung der 
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Events allerdings zunimmt. Das bedeutet, dass im Sommer eher kürzere, dafür leistungs-

stärkere Events detektiert werden, in dem Wintermonaten längere, dafür leistungsärmere 

(aber trotzdem energiereichere) Events stattfinden. 

Die maximale Leistung pro Event zeichnet ein ähnliches Bild wie zuvor die mittlere Leis-

tung. Tendenziell werden in den Sommermonaten auch höhere Maximalleistungen er-

reicht. 

 

 

Abbildung 141 – Dauer, Energie, durchschnittliche Leistung und Maximalleistung pro 
Event von WPs im Jahresverlauf. 

 

Tabelle 20 - Verhältnis von Messungen mit Zustand “On” im Verhältnis zu Messungen mit 
Zustand “Off”. Zusätzlich ist die Anzahl der “On” Events, die in jedem Monat analysiert 
wurde, aufgelistet. 

Monat Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt Nov Dez 

Verhält-

nis „On“ 

zu „Off“ 

(%) 

57.36 45.85 33.62 20.59 18.63 5.29 4.50 5.18 6.70 16.26 34.57 51.61 

Anzahl 
der 

Events 

41 913 35 338 34 783 24 723 25 313 10 735 10 211 12 102 10 336 22 902 33 706 42 149 

 

Im Zusammenhang mit dem Schieberegister kann man nun Überlegungen anstellen, wie 

schnell ein zeitlich konstant implementiertes Schieberegister seine Komponenten wech-

seln sollte, wenn man den natürlichen Verlauf so wenig wie möglich beeinflussen möchte. 

Im Dezember und Januar liegt der Median der Eventdauer bei etwa einer Stunde. Gene-

rell zeigt sich, dass die Daten sehr stark streuen und Werte bis zu 3.5 Stunden möglich 

sind. Die Streuung der Messwerte ist unter anderem dadurch bedingt, dass viele Wärme-

pumpen auch individuell betrachtet stark unterschiedliche Eventdauern haben (siehe 

auch Abbildung 140), und nicht nur verschiedene WPs unterschiedliche Eigenschaften zu-

einander aufweisen. Wenn man davon ausgeht, dass eine WP sich ausschaltet, sobald sie 
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den eingestellten Temperaturwert des Pufferspeichers erreicht, erlaubt dies weiterfüh-

rende Überlegungen. Möchte man nun also verhindern, dass sich mehr als die Hälfte aller 

Pumpen in einem RE-Abrufzeitraum aufgrund der Temperaturgrenzen abschalten, dann 

sollte man sie maximal eine Stunde im InPool verweilen lassen. Um 75% der Events für 

RE bei selber Leistung verwenden zu können wäre die Verbleibdauer im Pool nur etwa 

30min. Im Sommer wäre der Wert wesentlich geringer. Dies gilt allerdings generell für 

das Potential zur Erbringung von RE durch WPs im Sommer. Alternativ kann man die 

Leistung der WPs drosseln, um länger RE erbringen zu können. Die verfügbare Energie-

menge bleibt dadurch trotzdem dieselbe. 

Zusätzlich wurden die mittleren Auslastungen der Wärmepumpen ermittelt. Dazu wurden 

alle vorhandenen Messwerte hinzugezogen, und das Verhältnis aller elektrischen Leis-

tungswerte >0 mit denen =0 verglichen. Diese sind in Tabelle 20 zu sehen. Hierbei spiel-

ten unvollständige Datensätze keine bedeutende Rolle, weil keine Events gesucht, son-

dern individuelle Messwerte verglichen wurden. 

Es zeigt sich, dass die Auslastung der WPs in den Wintermonaten bei etwa 50% liegt, im 

Sommer bei etwa 5%. Diese Unterschiede spielen daher auch bei der Bereitstellung von 

RE eine wichtige Rolle. Da voraussichtlich hauptsächlich negative SRL bereitgestellt wer-

den soll, lässt sich eine Auslastung von 50% im Winter sehr gut nutzen, da dieses Ver-

hältnis den höchsten Grad an Flexibilität bietet. 

Der Median für die Leistung pro Event liegt im Winter zwischen zwei und zweieinhalb Ki-

lowattstunden. Daraus, in Kombination mit der Auslastung aus Tabelle 20, könnte das 

Potential für einen RE-Abruf berechnet werden, wenn man auf die reale Größe des Pools 

hochskaliert. Bei fünfzigprozentiger Auslastung würde das etwa 1-1.25 kW konstanter 

Leistung pro Wintertag und Wärmepumpe bedeuten. 

Zusammenfassend lässt sich dokumentieren, dass es vor allem im Winter genügend Po-

tential gibt um SRL zu erbringen. Allerdings erschwert die variierende Dauer der natürli-

chen Abrufe das Eingliedern der WPs in ein Schieberegister mit konstanter Schaltperiode. 

 

10.6.10  Anwendung auf Batteriespeicher 

Das SR kann auch für Batteriespeicher angewendet werden. Es wurden im Laufe des Pro-

jektes zwei Arten dieses SR diskutiert: Einerseits kann das Prinzip eines logischen Schalt-

werks aus der Elektronik angewandt werden, wie für WP beschrieben. Dabei werden die 

unterschiedlichen Poolzustände von jedem Speicher einzeln nach dem Prinzip „First In 

First Out“ durchlaufen. Andererseits kann ein „switch“ Prinzip angewandt werden, bei 

dem gleichzeitig alle Anlagen nach einer festgelegten Verweildauer in den Poolzuständen 

das jeweilige Pool verlassen, und in den nächsten Poolzustand übergehen. 

Um sicherzustellen, dass die Anlagen bevor sie in den aktiven Pool wechseln auch tat-

sächlich Regelenergie liefern können, wird bei Batteriespeichern ein weiteres Pool, ein 

„vorbereitendes Pool“, erstellt. In diesem vorbereitenden Pool wird Energie über den ID 

Markt gehandelt um freie Kapazität zu schaffen. Bevor die Anlagen aus dem aktiven Pool 

wieder in den passiven Pool wechseln, muss sichergestellt werden, dass diese dem zuvor 

angegebenen Fahrplan folgen, um durch abweichen von dem Fahrplan nicht wiederum 

Regelenergie zu erzeugen. Dazu kann ein „nachbereitendes“ Pool erstellt werden. In die-

sem nachbereitenden Pool wird jene Energie, die im aktiven Pool als Regelenergie bereit-

gestellt wurde, am ID Markt wieder zu-, oder verkauft um den vorherigen Anlagenzu-

stand wiederherzustellen, und somit auch zur Baseline zurückzukehren.  

Dies bedeutet zum Beispiel, dass ein zu 100 % beladener Batteriespeicher, um sowohl 

positive als auch negative Regelenergie zu gleichen Teilen anbieten zu können, im vorbe-

reitenden Pool 50 % der gespeicherten Kapazität am ID Markt verkauft und somit mit ei-

nem SoC von 50 % in den aktiven Pool über geht. Im nachbereitenden Pool wird der Bat-

teriespeicher wieder auf eben diese 50 % SoC be- oder entladen. Somit können unge-

wollte Nachholeffekte nach Erbringung von Regelenergie und dem Wechsel in das passive 
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Pool verhindert werden. Als ungewollter Nachholeffekt gilt zum Beispiel das volle Einspei-

sen der hausinternen Erzeugung, nachdem der Speicher mit negativer Regelenergie bela-

den wurde. Wird die Erzeugung und die überschüssige Batteriespeicherkapazität, im Ver-

gleich zum Baselineszenario, hingegen am ID Markt verkauft, so wird diese Energie am 

Strommarkt vorzeitig registriert und gehandelt, wodurch es zu keinen Nachholeffekten 

kommt. 

 

Beispiel eines Schieberegisters anhand einer Anlage 

Das folgende Beispiel zeigt die Funktionsweise des Schieberegisters anhand einer einzel-

nen Anlage. Die Anlage besteht in diesem Beispiel aus einem Batteriespeicher, einer Last 

und einer Erzeugungsanlage. Es soll gleich viel positive, als auch negative Regelenergie 

zum gleichen Zeitpunkt angeboten werden. Dazu werden, wie zuvor erklärt, vier Poolzu-

stände definiert. Sobald die Anlage sich nicht mehr im passiven Pool befindet wird der 

Batteriespeicher nicht mehr zur Eigenoptimierung genutzt, sondern lediglich zur Re-

gelenergiebereitstellung. Die Erzeugung speist weiterhin die Last, lädt aber nicht mehr in 

den Batteriespeicher. Ebenso wird keine Energie mehr aus dem Batteriespeicher genutzt 

um die Last zu versorgen. Der SoC des Batteriespeichers soll im aktiven Pool konstant 

50 % betragen, dazu wird Energie im vorbereitenden Pool zu- beziehungsweise verkauft. 

Nach einem Regelenergieabruf werden wiederum die 50 % SoC hergestellt, um im akti-

ven Pool keine Nachholeffekte aufzuweisen.  

Abbildung 142 zeigt ein Beispiel des Schieberegisters anhand eines Batteriespeichers und 

einer Erzeugungsanlage. In Reihe a) wird der Schieberegisterdurchlauf ohne Regelener-

gieabruf gezeigt. In Reihe b) der Schieberegisterdurchlauf mit Regelenergieabruf gezeigt. 

Es ist zu erkennen, dass sich die beiden Poolzustände „passiv“ und „vorbereitend“ in 

Reihe a) und b) gleichen. Im nachbereitenden Pool in Reihe a) muss keine Energie am ID 

Markt gehandelt werden, da der SoC nach wie vor auf 50 % beträgt. In Reihe b) muss, 

um auf den Fahrplan zurückzukehren, jene Energie, die zu Regelenergiezwecken aufge-

nommen wurde, am ID Markt verkauft werden um wieder auf 50 % SoC zu gelangen. 

 

Verweildauer von Batteriespeichern in den Poolzuständen 

Allgemein bei der Verweildauer der Batterie in dem jeweiligen Zustand gilt: 

    

          

               

             

     

    

    

          

               

             

     

    

                                                   

                                                  

                                                                        

                                                                        

Abbildung 142 - Darstellung der unterschiedlichen Poolzustände eines Batteriespeichers 
(eigene Darstellung, 2019) 
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𝑚𝑎𝑥𝑖𝑚𝑎𝑙𝑒 𝑃𝑜𝑜𝑙 𝑉𝑒𝑟𝑤𝑒𝑖𝑙𝑑𝑎𝑢𝑒𝑟 =  
𝑣𝑒𝑟𝑓ü𝑔𝑏𝑎𝑟𝑒 𝑆𝑝𝑒𝑖𝑐ℎ𝑒𝑟𝑘𝑎𝑝𝑎𝑧𝑖𝑡ä𝑡

𝑣𝑒𝑟𝑓ü𝑔𝑏𝑎𝑟𝑒 𝐿𝑒𝑖𝑠𝑡𝑢𝑛𝑔
 

Das Verhältnis der Speicherkapazität zur maximalen Lade-/ Entladeleistung beträgt bei 

den betrachteten Batteriespeichern 1 bis 1,5, das bedeutet, dass ein vollgeladener Batte-

riespeicher 60 bis 90 Minuten lang positive Regelenergie liefern kann.  

Im folgenden Abschnitt werden zwei unterschiedliche Arten des SR analysiert: Als erstes 

wird das switch-Prinzip untersucht, bei dem jeder Pool eine spezifische Verweildauer hat 

und zu Ablauf der Zeit alle Anlagen in dem jeweiligen Pool gleichzeitig getauscht werden. 

Als zweite Methode wird das logische Schaltwerk angewendet, bei dem die Anlagen ein-

zeln, je nach anlagenspezifischen Eigenschaften, die Poolzustände durchlaufen.  

 

Schieberegisteranwendung nach festgelegter Verweildauer  

In dem Schieberegister nach festgelegter Verweildauer in den jeweiligen Pools werden 

wie bereits beschrieben alle Anlagen in einem Pool gleichzeitig rotiert. Dies bedeutet, 

dass die Verweildauer in dem aktiven Pool stets nach jenem Batteriespeicher angepasst 

werden muss, der zuerst die Kapazitätsgrenze erreicht hat. Bei dem vorbereitenden und 

dem nachbereitenden Pool ist dies genau umgekehrt, wodurch sich lange Vor- und Nach-

bereitungszeiten ergeben. 

 

Die folgende Tabelle zeigt beispielhaft die theoretisch mögliche Verweildauer der Batte-

riespeicher im aktiven Pool je nach SoC.  

Tabelle 21 Darstellung der maximalen Verweildauer im aktiven Pool 

 Verhältnis der Kapazität zu maximaler Leistung 

 Laden Entladen 

SoC [%] 1 1,5 1 1,5 

100 - - 1 h 1,5 h 

75 15 min 22,5 min 45 min 1h 7,5 min 

50 30 min 45 min 30 min 45 min 

25 45 min 1 h 7,5 min 15 min 22,5 min 

0 1 h 1,5 h - - 

 

Beispiel: 

Das Verhältnis von Speicherkapazität zur maximalen Lade-/ Entladeleistung ist bei den 

betrachteten Speichersystemen von Fronius zwischen 1 und 1,5. Demnach kann der Bat-

teriespeicher, bei 100 % SoC eine, bis eineinhalb Stunden mit Nennleistung entladen 

werden. Die tatsächliche mögliche Verweildauer des Batteriespeichers ist dabei stets ab-

hängig vom momentanen SoC, und somit der vorgehaltenen Regelenergiekapazität, so-

wie von der Art und Menge der angebotenen Regelenergie.  
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Die Maximalverweildauer der Batteriespeicher im aktiven Pool beträgt, unter der An-

nahme, dass die Verweildauer bei allen Batteriespeichern konstant sein soll, 60 Minuten. 

Wird zur gleichen Zeit positive und negative Regelenergie angeboten, so halbiert sich sie 

maximale Verweildauer auf 30 Minuten. Abbildung 143 zeigt die Verweildauer der Pools 

in den jeweiligen Zuständen bei einer Vorhaltung der Batterie-kapazität von 50 %. Wie 

zu erkennen ist werden bei dieser Betriebsweise sechs unterschiedliche Pools benötigt. 

Jeder der sechs Pools bietet eine halbe Stunde lang SRR an.  

Die Nachbereitungszeit, um nach Bereitstellung der Regelenergie wieder auf das Baseli-

neszenario zurückzukehren ergibt sich ebenfalls aus dem Kapazitäts- Leistungsverhältnis. 

Hierbei ist jedoch von jenem Batteriespeicher im System aus zu gehen, bei dem das Ka-

pazitäts- Leistungsverhältnis am größten ist, um das Worst- Case Szenario abdecken zu 

können. In diesem Fall ist das ein Verhältnis von 1,5 und 50 % der Batteriekapazität. Da 

im ID Markt Energie im 15 Minutentakt, mit mindestens 5 minütiger Vorankündigung, ge-

kauft beziehungsweise verkauft werden kann, beträgt die minimale Nachholzeit eine 45 

Minuten für die Ladung/ Entladung selbst und 5 Minuten für den Abschluss am ID Markt 

(next-kraftwerke, n.d.). Je nach der Preissituation am Strommarkt kann diese Spanne 

verlängert werden, um auf die bestehenden ID Preise reagieren zu können.  

Für die Vorbereitungszeit gilt die gleiche Zeitspanne wie für die Nachbereitungszeit. Ab-

hängig von dem Verhältnis von Kapazität zu Leistung muss die Zeitspanne lange genug 

gewählt werden, um vom momentanen SoC auf die gewünschte vorgehaltene Kapazität 

zu gelangen.  

In diesem Beispiel werden sechs gleich große Pools benötigt um jederzeit abrufbereit sein 

zu können. Dafür ist das hier dargestellte Schieberegister geeignet um durchgehend Re-

gelenergie anbieten zu können. Ein Schieberegisterdurchlauf dauert dabei 180 Minuten, 

das bedeutet, dass jeder Pool alle 2,5 h für 30 Minuten abrufbereit ist.  

 

SR Anwendung nach dem Prinzip logisches Schaltwerk  

Die Methode des zweiten SR basiert auf der Idee eines logischen Schaltwerks aus der 

Elektronik, wie es bereits bei WP beschrieben wurde. Dabei durchläuft jeder Speicher ein-

zeln jeden Poolzustand nach dem „First In First Out“ Prinzip. Der Vorteil dieses Prinzip ist, 

dass die Poolgröße variabel ist und in Fehlerfällen die fehlerhafte Anlage schnell und ein-

fach, durch nachrutschen der nächsten Anlage, ausgetauscht werden kann. Das SR, wie 

bei WP definiert wurde ebenfalls wie das zuvor genannte SR um ein vor- und ein nachbe-

reitendes Pool erweitert. 

Die Verweildauer in den jeweiligen Poolzuständen ergibt sich wiederum aus der oben an-

geführten Formel für die maximale Pool Verweildauer. Der Unterschied ist, dass es keine 

feste Anzahl der Anlagen im aktiven Pool gibt. Stattdessen kann eine feste Leistung an-

Abbildung 143 - Verweildauer der Pools in den jeweiligen Zuständen bei einer Vorhal-
tung der Batteriekapazität von 50 % (eigene Darstellung) 
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gegeben werden, mit der der Batteriespeicher Regelenergie erbringen muss. Ist die Ka-

pazität des Batteriespeichers erreicht, oder die Clock abgelaufen, so geht der Batterie-

speicher vom aktiven Pool in den nachbereitenden Pool über. Sobald die Nachbereitung 

vollendet ist geht der Batteriespeicher in den passiven Pool über, hier OutPool bezeich-

net. Für den vorbereitenden Pool gilt dies ebenfalls; mit jedem Batteriespeicher, der in 

den aktiven Pool wechselt, wechselt ein Batteriespeicher in den vorbereitenden Pool, und 

schließlich von dort in den aktiven Pool.  

Die Anwendung dieser Methode bewirkt, dass die Poolgröße variabel ist und das Potential 

jedes einzelnen Batteriespeichers vollständig ausgenutzt werden kann, da keine Rück-

sicht auf das „schwächste Glied“ genommen werden muss. Des Weiteren können mit die-

ser Variante fehlerhafte Anlagen einfach aus dem Schieberegister entfernt werden, ohne 

die einzelne Anlage ersetzen zu müssen.  

 

Gegenüberstellung der beiden Schieberegistermethoden 

Wie bereits kurz erwähnt weist das Schieberegister nach dem Prinzip logisches Schalt-

werk mehr Flexibilität auf. Zusätzlich kann das Regelenergiepotential jedes einzelnen 

Batteriespeichers voll ausgenutzt werden und die Vor- und Nachbereitungszeiten werde 

minimiert. Durch die flexible Anwendung ist es zusätzlich möglich ausfallende Anlagen 

aus dem Schieberegister zu nehmen, ohne diese ersetzen zu müssen.  

Alles in Allem ist daher das Schieberegister nach dem Prinzip logisches Schaltwerk zu be-

vorzugen. 

 

10.6.11  Erweiterung mit pop & append 

Als Alternative zu der bestehenden Idee des SR könnte man eine pop & append-Lösung 

einführen. Die Grundidee beruht auf der Manipulation von Listen in Python. Die Liste 

kann mit beliebig vielen Elementen initialisiert werden. 

In diesem Absatz wird das Konzept für Wärmepumpen gezeigt. Jedes Element der Liste 

wäre eine individuelle Wärmepumpe. Alle verfügbaren WPs würden der Liste hinzugefügt 

werden und diese entspricht nun dem Gesamtpool. In diesem Status können alle WPs 

entweder autonom schalten oder einem spezifischen Fahrplan folgen.  

Bei einem Regelenergieabruf durch den TSO könnte man, beginnend beim nullten Ele-

ment (der nullten WP) die ersten n Elemente als Elemente des InPools definieren, alle 

dahinter folgenden wären demnach im OutPool. Die Anzahl der benötigten Elemente 

könnten bestimmt werden, indem man die Höhe des Abrufes mit der Leistungsfähigkeit 

(Leistung, Energieinhalt der Liegenschaft,…) abgleicht. Dazu muss das Resultat nicht un-

bedingt exakt zutreffen, sondern kann lediglich einen Richtwert darstellen, da eine spä-

tere, genauere Anpassung (fine tuning) an die tatsächlichen Gegebenheiten ohnehin 

sinnvoll wäre. 

Bei einem RE-Abruf wird (so wie beim Schieberegister zuvor) der Arbeitspunkt des neu 

entstanden InPools durch Mittelung der letzten Messpunkte eingefroren und danach der 

RE-Abruf freigegeben. Sobald nun eine WP, die RE leistet, eine bestimmte Bedingung er-

füllt (siehe unten), gibt sie ein Signal und wird aus der Liste des InPools entfernt (pop). 

Der RE-Abruf endet für die individuelle Pumpe. Alle WPs mit höheren Listenplätzen rü-

cken automatisch einen Platz weiter auf (in Richtung des nullten Elements). Das führt 

dazu, dass die erste WP des OutPools (an der Grenze zum InPool) nun in den InPool 

rutscht. Nun leistet sie automatisch RE für den Pool, und zwar statt der zuvor entfernten. 

Sollte die Leistung der neuen WP kleiner sein, könnte man die Anzahl der aktiven WPs 

um eins erhöht werden. 

Mögliche Bedingungen für ein pop, also ein Entfernen aus dem InPool: 
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• Erreichen der Temperaturgrenzen. Dies ist wahrscheinlich die 

wichtigste Bedingung für den konstanten Austausch des InPools. Wird 

ein/e Liegenschaft/Speicher zu heiß oder zu kalt, dann wird die ent-

sprechende WP entfernt. 

• Unerwünschter Status. Sollte keine positive oder negative Re-

gelenergie für eine individuelle WP erbringbar sein (z.B. weil schon 

eingeschaltet, wenn negative RE erbracht werden soll), dann kann sie 

daran gehindert werden, überhaupt in den InPool zu gelangen. Das 

würde Effekte wie sie in Kapitel 13510.6.7 bereits beschrieben wur-

den, vermeiden. 

• Fehlerhafte Funktion. Dies könnte sowohl das Ausfallen einer WP 

durch Reparatur sein, aber auch bei (temporären) Verbindungsprob-

lemen zum Tragen kommen. 

• Timeout. Man kann eine maximale Verweildauer definieren, die si-

cherstellen würde, dass die WP nur limitierte Zeit im InPool verbrin-

gen darf. Wenn man das Timeout von der Anzahl der Pumpen im In-

Pool abhängig macht, dann kann man die ursprüngliche Dynamik des 

klassischen Schieberegisters wiederherstellen, sollte das erwünscht 

sein. 

• Standort. Dies würde zum Tragen kommen, wenn man verhindern 

möchte, dass sich alle WPs des InPools im selben Bereich des Netzes 

befinden, da sie sonst möglicherweise das Netz dadurch lokal uner-

wünschten Belastungen aussetzen könnten. Bei einer geringen An-

zahl von WPs (Testbetrieb) spielt diese Bedingung aber noch keine 

Rolle. 

 

Die „gepopte“ WP ist wird nun mit dem Befehl append ans Ende der Gesamt-Liste ange-

hängt, wo sie sich aber mit Sicherheit im OutPool befindet und nicht mehr RE-aktiviert 

ist. Hier kann sie autonom oder nach Fahrplan handeln und sich erholen (abkühlen, auf-

heizen, etc.). Mit dem regen Verlassen des InPools von WPs, die eine der pop-Bedingun-

gen erfüllen bewegt sich die individuell betrachtete WP mit der Zeit wieder zu niedrigeren 

Listenplätzen und kommt damit einem neuerlichen RE-Abruf immer näher. Ein neuerli-

cher Abruf hängt wiederrum von der Leistung der anderen WPs im InPool und der Anzahl 

der aktivierten Pumpen ab und kann dadurch zeitlich, den Gegebenheiten angepasst, va-

riieren. 

Alternativ kann die Phase zwischen pop und append auch dafür genutzt werden, um ei-

nen zusätzlichen, zwischenzeitlichen Betrieb (beispielsweise begrenzt autarkes Verhalten 

für 15min bei bestehendem Fahrplan) umzusetzen. 

Parallel könnte man auch einen Pool für Pumpen schaffen, die prinzipiell an dem Projekt 

teilnehmen, aber aufgrund des verantwortlichen Prosumers derzeit keine Regelenergie 

leisten wollen oder defekt sind. Sie könnten jederzeit von ihrem Pool in den Zyklus einge-

fügt werden. 

Auch die im Kapitel 10.6.7 angesprochenen Probleme bezüglich des Status vor dem Abruf 

könnten umgangen werden, indem man bereits angeschaltete WPs kurz vor dem Eintritt 

in den InPool vom Leisten von RE ausschließt und ans Ende der Liste schiebt. Leis-

tungsmessdaten, die auch für das Einfrieren der Leistung benötigt werden, können zur 

Bestimmung des Status herangezogen werden. 
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Abbildung 144 - Graphische Darstellung des pop & append-Konzepts. In weiß findet man 
die Ziffern der Listenplätze vor dem pop-Vorgang, in rot bzw. türkis die neu zugewiesen. 

Nach dem Entfernen der Komponente 2 rutscht die Komponente 11 (weiß) in den InPool, 
wo sie nun aktiviert wird um RE zu erbringen.  

 

Ein grundlegender Unterschied zu dem herkömmlichen Schieberegister-Konzept besteht 

darin, dass es hier keiner Clock mehr bedarf, und damit kein vorgegebenes Timing mehr 

benötigt wird. Das alleine verändert die Dynamik grundlegend, weil der Austausch der 

WPs im InPool rein durch die Erbringbarkeit von RE und die Leistungsgrenzen jeder ein-

zelnen Wärmepumpe gewährleistet wird. 

Eine weitere Neuheit bei dem Konzept wäre die Idee, die WPs nicht sequenziell abzuar-

beiten, sondern auch vorzeitig aus dem aktiven Pool zu nehmen. Dadurch verändert sich 

auch die Reihenfolge und WPs, die niedrigere Nennleistungen aufweisen, werden auch öf-

ter wieder dem InPool zugeführt. Es spielt zudem keine Rolle, wie viele Pumpen in einem 

Moment aus dem InPool entfernt werden, da immer die exakt selbe Anzahl an WPs nach-

rückt (vorausgesetzt man hält die Größe des InPools konstant). 

 

 

Faktoren zur Optimierung 

Im folgenden Abschnitt werden die den Kapiteln 10.6.3 bzw. 10.6.4 diskutierten ver-

schiedenen Faktoren zur Optimierung des Schieberegister-Konzepts auf den alternativen 

Lösungsansatz pop & append angewandt. 

 

• Gesamtleistung. Diese ist nun zwar auch vermindert gegenüber 

dem Gesamtpool, allerdings leicht dynamisch veränderbar. 

 

• Ausfallskompensation/-ersatz. Leicht zu implementieren durch 

die pop-Bedingungen der Liste. 

 

• Bestreben einzelner Anbieter/gleichmäßige und faire Vertei-

lung. Ein relativ gleichmäßiger Abruf kann garantiert werden. Selbst 

wenn Teilnehmer zu einem kurzen Zeitpunkt nicht abrufbar sind, 

haben sie beim nächsten Durchlauf wieder die Möglichkeit RE zu 

leisten ohne zwischenzeitlich die anderen Teilnehmer zu blockieren. 

 

• Nachholeffekte. Diese sind soweit möglich optimiert, weil eine WP 

genau solange nicht abgerufen wird, solange sie nicht gebraucht 
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wird. Damit ist sie möglichst lange nicht aktiv und hat die maximale 

Zeit sich zu ‚erholen‘. Wie lange sie nach einem Abruf nicht aktiviert 

wird hängt stark von der Anzahl der verfügbaren WPs und deren 

Leistungen, sowie der Höhe der angeforderten RE ab. 

 

• Leistungs-/Temperaturoptimierung. Eine Bestimmung über die 

Daten der WPs ist möglich, aber nicht notwendig. Das bedeutet, 

dass ein System ohne Fahrplan genauso implementierbar ist wie ei-

nes ohne Fahrplan. Auch bei autonomem Betrieb der WPs ist das 

Konzept anwendbar und die pop-Bedingung kann an verschiedene 

Events geknüpft werden. 

 

• Leistungsfähigkeit/Wirkungsgrad. Die WPs können (in der The-

orie) autonom ihre optimale Arbeitstemperatur (bzw. Arbeitspunkt) 

bestimmen und optimieren damit ihren Wirkungsgrad. 

 

• WP-Austausch. Der Pool reguliert seine Austausch-Geschwindig-

keit selbst und bietet ausreichend Platz für leistungsschwächere 

WPs bzw. für einen WP-Pool mit stark verschiedenen Teilnehmern. 

 

• Reaktionszeiten und Einschwingvorgänge. Die Reaktionszeit 

der WPs auf externe Befehle ist noch unbekannt. Die Einschwingvor-

gänge sollten aber gut abschätzbar sein. Nachdem ein ähnlicher Be-

trieb zum autarken Schalten angestrebt werden sollte, wird die WPs 

auch nicht ständig ein- und ausgeschaltet werden und der Einfluss 

der Einschwingvorgänge sollte sich dadurch in Grenzen halten. 

 

• Rechnerischer Aufwand. Programmiertechnisch sollte das Kon-

zept relativ leicht zu implementieren sein. 

 

 

 

Vor- und Nachteile des pop & append-Konzepts 

 

 

Vorteile: 

 

• Flexible InPool-Größe 

• Dynamisch aktivierte Pumpen 

• Flexible Reihenfolge der Pumpen 

• Alle WPs können genutzt werden ohne eine Schaltzeit definieren zu 

müssen – diese ist automatisch abhängig vom RE-Abruf 

• Minimale Beanspruchung der WPs, weil ihr volles Potential auf ein-

mal ausgeschöpft wird, bis sie an die Grenze stoßen, bevor die 

nächste WP herangezogen wird 

• WPs mit unerwünschtem Status (z.B. ein bei RE-Abruf) können 

nachgereiht und zu einem späteren Zeitpunkt effektiver eingesetzt 

werden 

• Defekte Pumpen können schnell und effizient aus dem aktiven Pool 

genommen werden ohne durch das gesamte aktive Feld schalten zu 

müssen 

 

 

 

 

Nachteile: 
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• Abhängigkeit des Konzepts von dem Statussignal der WPs bzw. indi-

viduellen (und dadurch potentiell wieder rechenaufwändigen) Be-

rechnungen durch die Plattform. 

• Das erweiterte Konzept nimmt an Komplexität zu und wird dadurch 

auch möglicherweise anfälliger für Fehler. 

 

 

Grundlegende Erkenntnisse und Fazit zu pop & append 

Zusammenfassend lässt sich festhalten, dass die vorgeschlagene Erweiterung des Schie-

beregisters das ursprüngliche Konzept zwar nicht vereinfacht, aber einige Komplikationen 

des klassischen Schieberegisters behebt. Unabhängig davon welches Konzept implemen-

tiert wird müssen zentrale Fragestellungen zum Umgang mit Wärmepumpen, welche zu 

einem Zeitpunkt nicht oder nicht mehr leisten können, oder dem Verhalten des Systems, 

wenn stark unterschiedliche WPs ausgetauscht werden, beantwortet werden. 

Zusätzlich hat sich gezeigt, dass eine Umsetzung des hier beschriebenen Konzepts auch 

auf andere Komponenten eines Pools denkbar wäre. Mit geeigneten, komponentenabhän-

gigen pop-Bedingungen, wie hier für Wärmepumpen angeführt, könnten auch andere 

Teilnehmer eines Pools, wie etwa Boiler oder Batteriespeicher, eingebunden werden. Im 

Weiteren könnte man sogar verschiedene Teilnehmer mit unterschiedlichen pop-Bedin-

gungen im selben Pool Regelenergie erbringen lassen. 

 

 

10.7 Baseline-Erstellung für Pools 

Die in Kapitel 10.3 gewählte Methode des Einfrierens des Arbeitspunktes beim RE-Abruf 

soll nun auf das Gesamtkonzept für dem Pool übertragen werden. Hierbei sei angemerkt, 

dass es dafür keine Rolle spielt, ob man das klassische Schieberegister oder pop & ap-

pend, oder eine Kombination daraus wählt. 

Für den InPool betrachtet werden prinzipiell alle individuellen Arbeitspunkte (bestimmt 

durch das Einfrieren der APs) vor dem RE-Abruf aufsummiert und bilden zu Beginn am 

Zeitpunkt 𝑡0 den Gesamtarbeitspunkt des InPools (InAP). 

𝐼𝑛𝐴𝑃|𝑡0 = ∑𝐴𝑃𝑖

𝑁𝑖𝑛

𝑖=0

 

Bei einem längeren Abruf müssen Elemente des bestehenden InPools ausgetauscht wer-

den. Wird nun eine beliebige Pumpe i mit 

𝑖 ∈  𝑁𝑖𝑛 

nach einer Zeitspanne Δ𝑡𝑖  durch einen Schiebevorgang oder ein pop aus dem InPool ge-

nommen, so wird ihr individueller Arbeitspunkt von dem InAP subtrahiert. 

 

𝐼𝑛𝐴𝑃|𝑡=𝑡0+ Δ𝑡𝑖   = 𝐼𝑛𝐴𝑃|𝑡0 − 𝐴𝑃𝑖   

 

Kommt eine Pumpe j mit 

𝑗 ∈  𝑁𝑜𝑢𝑡  =  𝑁𝑔𝑒𝑠 − 𝑁𝑖𝑛 

nach einer Zeitspanne Δ𝑡𝑗  (entspricht genau der Clock-Schaltzeit beim klassischen Schie-

beregister) in den InPool, wird ihr AP zum InAP addiert: 

𝐼𝑛𝐴𝑃|𝑡=𝑡0+ Δ𝑡𝑖   = 𝐼𝑛𝐴𝑃|𝑡0  +  𝐴𝑃𝑗     . 
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Bei Gleichzeitigkeit  

Δ𝑡𝑖   =  Δ𝑡𝑗  = : Δt  

von dem Herausnehmen bzw. Hineinkommen der Komponente des InPool gilt für den 

nächsten Zeitschritt 

𝐼𝑛𝐴𝑃|𝑡=𝑡0+ Δ𝑡   = 𝐼𝑛𝐴𝑃|𝑡0  + Δ 𝐴𝑃      

mit 

Δ𝐴𝑃 = − 𝐴𝑃𝑖  + 𝐴𝑃𝑗     . 

 

Allgemein gilt daher 

𝐼𝑛𝐴𝑃(t) = 𝐼𝑛𝐴𝑃(𝑡0) +∑Δ𝐴𝑃(𝑘)

𝑡

𝑘=1

 

mit 

𝑡, 𝑘 ∈  𝑁>𝟘    . 

Dieses von iDM, APG und World-Direct entwickelte Konzept führt zur sogenannten Ar-

beitspunkt-Nachführung. Dies bedeutet, dass der Arbeitspunkt des InPools immer der 

Summe der Einzel-Arbeitspumpen der aktiven Pumpen entspricht und dynamisch an die 

derzeit im InPool befindlichen Pumpen angepasst wird. 

Gilt zudem 

Δt =  𝑐𝑜𝑛𝑠𝑡.    ,  

dann ist die Schaltperiode konstant und das klassische Schieberegister mit konstanten, 

diskreten Zeitschritten ist implementiert. Sollte Δt  nicht konstant sein, sondern beliebige 

Werte ≥ 0 annehmen können, dann variiert dementsprechend auch der Periode des Kom-

ponenten-Austausches über die Zeit, wie es etwa bei der dynamischen Umsetzung der 

Fall wäre. 

 

 
 

Abbildung 145 - Graphische Darstellung zur Bestimmung der Baseline 

und ihres Verhaltens bei einem konstanten RE-Abruf für 𝚫𝐭 =  𝒄𝒐𝒏𝒔𝒕. 
beim Tausch von Komponenten K (siehe auch IDM, APG & WD, 2019). 
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10.8 Fazit 

Die Bereitstellung von SRR von distributiven Haushalten ist insoweit möglich, als dass der 

Gesamtpool die Mindestliefermenge von +/- 1 MW für vier Stunden aufrechterhalten und 

für mindestens 15 Minuten liefern kann. Der Poolbetreiber ist dabei für die Einhaltung 

sämtlicher organisatorischer Regeln zuständig. Die Koordination der Haushalte wird 

ebenfalls vom Poolbetreiber übernommen. 

Unter einer Baseline versteht man den Nachweis der erbrachten Regelenergie. Die Base-

line spiegelt dabei wieder, wie sich die Anlage verhalten hätte, hätte sie keine Regelener-

gie erbracht. Die Differenz zwischen der Baseline und dem tatsächlichen Arbeitspunkt der 

Anlage wird schlussendlich als Nachweis herangezogen. Diese kann dem TSO während 

oder kurz nach der Erbringung der Regelenergie übermittelt werden. Bei distributiver Be-

reitstellung der SRR sollte die Baseline für jede Anlage erstellt werden. Es existieren 

mehrere Methoden der Baselineerstellung. Für die Baselineerstellung für WPs wurde der-

zeit etwa der momentane Arbeitspunkt bei Abruf der Regelenergie beibehalten und, in 

Kombination mit einem Schieberegister, als Baseline herangezogen. Für Batteriespeicher 

kann die Baseline bereits technisch und praktisch über die Ansteuerung des BMS reali-

siert werden. Für Photovoltaikanlagen wurden folgende Nachweismethoden betrachtet: 

„Nach Fahrplan“, „Nachweis nach möglicher Erzeugung“ und „Nachweis nach dem Physi-

kalisch – Probabilistisches Modell“. Die Baselineberechnungsmethode „Nach Fahrplan“ ist 

zwar technisch möglich, jedoch ist die Vorhersagegenauigkeit der Photovoltaikanlage 

zum momentanen Zeitpunkt noch zu gering um sie praktisch anwenden zu können. Der 

„Nachweis nach möglicher Erzeugung“ ist seit der neuen Version der TOR Erzeuger Typ A 

Version 1.1 technisch als auch praktisch durchführbar. Um die Baselineberechnungsme-

thode „Nachweis nach dem Physikalisch – Probabilistisches Modell“ anwenden zu können 

muss die Genauigkeit der Wetterprognose und von physikalischen Modellen verbessert 

und im Anschluss mit Messwerten validiert werden. 

 

Um die SRR Bereitstellung so effizient wie möglich zu gestalten, den Eigenverbrauch und 

die Eigenoptimierung der Haushalte möglichst wenig zu beeinflussen kann zusätzlich ein 

Schieberegister implementiert werden. Dabei wurde gezeigt, dass es zumindest zwei 

Poolzustände, das aktive Pool und das passive Pool, geben muss. Vorteil des Schiebere-

gisters ist es, dass nicht alle Anlagen jederzeit abrufbar sein müssen, und die SRR Bereit-

stellung somit flexibler ist. Insgesamt wurden zwei Arten des Schieberegisters analysiert. 

Bei dem ersten Schieberegister wurden die Anlagen je nach Größe in Pools eingeteilt, 

welche dann nach festgesetzten Zeiten durch die unterschiedlichen Poolzustände rotie-

ren. Das zweite Schieberegister basierte auf der Idee eines logischen Schaltwerks, bei 

dem die Anlagen die Poolzustände einzeln je nach Regelenergiepotential und einer maxi-

malen Verweildauer im aktiven Pool durchlaufen und zudem keine konstanten Schaltperi-

oden mehr notwendig sind (pop & append). Nach näherem Betrachten wurde das zwei-

tere Modell mit dem dynamische Schieberegister für die weiteren Überlegungen ausge-

wählt. Dieses Schieberegister erwies sich als flexibler, potentiell effizienter und robuster 

gegenüber Ausfällen als das Schieberegister mit fester Anlagenanzahl. Obwohl besagtes 

Konzept anfangs nur für Wärmepumpen betrachtet wurde, stellte sich heraus, dass es 

durchaus auch für verschiedene Komponenten genutzt werden könnte. Dies würde nicht 

nur bedeuten, dass dieselben Komponenten, wie etwa Boiler oder Batteriespeicher, in ei-

nem Pool zusammengefasst werden können, sondern, bei einer grundlegenden Erweite-

rung und komponentenweiser Randbedingungen, auch für verschiedenartige Anlagen in 

Mischpools funktionieren könnten. Dadurch könnte die Effizienz für die Bereitstellung von 

Regelenergie so umgesetzt werden, dass Prosumer wesentlich geringere Einschränkun-

gen erfahren, während das bestehende Potential effektiver ausgenützt werden kann. Zu-

dem konnten die Effekte der Implementierung eines Schieberegisters durch die Arbeits-

punktnachführung dokumentiert werden. 

 

Abschließend kann festgehalten werden, dass es technische, als auch praktische Lösun-

gen zur Baselineerstellung von distributiven Haushalten gibt. Baselines können sowohl 
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für Batteriespeicher, WPs, als auch für Photovoltaikanlagen erstellt werden. Die erstellten 

Baselines und weiterführende Konzepte sind allerdings anschließend von der APG zu be-

willigen. Deshalb kann es durchaus dazu kommen, dass Details des einen oder anderen 

Konzepts an die erweiterten Anforderungen des TSO angepasst werden müssen. 

 

Die zukünftige Schwierigkeit liegt daher nicht notwendigerweise im Nachweis der er-

brachten Regelenergie, sondern weiterführend in der Angebotsstellung der Regelenergie, 

der Koordination der Anlagen und in der Erhöhung der der Prognosegüte. 
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11 Zusammenfassung und Schlussfolgerungen 

      Markt 
 

 
UseCase 

Primär-
regel-

markt 

Sekundär-
regel-

markt 

Tertiär-
regel-

markt 

DA-Markt ID-Markt 

    
Ein-
kauf 

Optimie-
rung 

Einkauf Optimie-
rung 

Reference 
   

X 
   

DA 
    

X 
  

PRL + ID X 
   

X X 
 

SRL + ID 
 

X 
  

X X 
 

TRL + ID 
  

X 
 

X X 
 

DA-ID 
    

X 
 

X 

CO2 
   

X 
   

Tabelle 22 Use-Cases und Märkte, an denen bei den jeweiligen Use-Cases auf welche Art 
und Weise teilgenommen wird 

Die in Tabelle 22 aufgeführten Use-Cases wurden mittels gemischt ganzzahliger Pro-

grammierung bzw. im Fall der Batterie mithilfe von Machine Learning Algorithmen model-

liert. Anschließend wurden Simulationen für verschiedene Zeiträume, verschiedene Pools 

und verschiedene Use-Cases durchgeführt. Es zeigt sich, dass die Teilnahme am Sekun-

därregelenergiemarkt für alle Pools ausnahmslos die größten Einsparungen erzielt.  

Die Aktivierungsabläufe für die Demoanwendungen müssen gut strukturiert und zeitlich 

richtig getaktet werden, damit jeder Teilnehmer zur richtigen Zeit, alle Daten zur Verfü-

gung hat, und der Geschäftsabschluss zeitgerecht vor Marktschluss zustanden kommen 

kann.  

Für den Fall, dass die Verbindung zwischen den Komponenten und der Flex+ Plattform 

abreißt, bedarf es komponentenspezifischer Fallback-Modi. Im Normalfall wird der ge-

plante Fahrplan, soweit vorhanden, ausgeführt. Steht kein Fahrplan zur Verfügung, muss 

jede Komponente in ihren jeweiligen Standardbetriebsmodus zurückfallen, damit ihre 

Funktionstüchtigkeit nicht eingeschränkt wird. 

Um mit den verschiedenen Komponenten an den Regelenergiemärkten teilnehmen zu 

können, sind gewisse Anforderungen vom Regelenergieanbieter notwendig, damit die Er-

bringung der Regelenergie bzw. dessen Nachweis gewährleistet ist. Dies wird in den Ba-

seline Konzepten vorgestellt.  

Die Modelle werden im Rahmen des Projektes Flex+ auch bei einem Feldversuch ange-

wendet und getestet. Das Pooling findet dabei über Komponenten-Pools statt, welche 

über einen Aggregator, die sogenannte Flex+ Plattform, mit den vermarktenden Stake-

holdern kommunizieren. Alle benötigten Forecasts, wie Wetter- und Verbrauchsprogno-

sen werden auf der Flex+ Plattform aggregiert und können von den Komponentenpools 

abgerufen werden. Der Optimierer findet den preisgünstigsten/CO2 -ärmsten Fahrplan, 

anschließend wird das Regelenergieangebot gestellt, und wenn dieses bestätigt oder ab-

gelehnt wird, wird je nachdem ein weiteres Mal Day-Ahead-optimiert und so ein aktuelle-

rer Fahrplan erstellt. Diese Fahrpläne werden dann von den Komponenten-Pools an die 

Flex+ Plattform und von dort an die Lieferanten und Regelenergieanbieter übermittelt. 

Als erster Schritt wird das Gebäudemodell validiert und auf Plausibilität überprüft, an-

schließend kann das Wärmepumpenmodell noch adaptiert werden. Außerdem spielt die 

Qualität der Wetter- und Lastprognosen eine essentielle Rolle, denn bei größeren Nach-

käufen kann es vorkommen, dass am Ende mit dem Nachkauf gleich viele Kosten entste-
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hen, wie zu Beginn im Referenzszenario. Ein weiterer wichtiger zu untersuchender Para-

meter ist, ab welcher Prognosequalität die Optimierung insgesamt nicht mehr rentabel 

ist.  

Aus den Ergebnissen der Optimierungen lassen sich mögliche Einsparungspotentiale ab-

leiten. Die Simulationen wurden bis auf die Abrufwahrscheinlichkeiten mit perfekten 

Prognosen gerechnet, daher fallen die monetären Einsparungen im Realbetrieb voraus-

sichtlich geringer aus. Die Potentiale für Einsparungen sind nichtsdestotrotz vorhanden. 

Die Demonstrationen werden mehr Aufschluss über das tatsächliche Einsparpotential ge-

ben.  

Manche Komponenten erscheinen basierend auf den Simulationen geeigneter als andere, 

um an verschiedenen Strommärkten teilzunehmen. Ob dies in der Realität zutrifft, wird 

sich im Realbetrieb zeigen. Die Prognosequalität spielt dabei eine sehr große Rolle, 

ebenso wie das Nutzerverhalten. Dies wirkt sich bei den thermischen Komponenten stark 

aus, da der Nutzer auf mehrere Arten die Raum- und Wassertemperaturen beeinflussen 

kann, indem er den Warmwasserbrauch stark verändert, oder beispielsweise durch das 

Öffnen von Fenstern oder der Beeinflussung der Raumtemperatur durch mehrere Perso-

nen im Zimmer usw. Beim Batteriespeicher, der vollständig für den Handel genutzt wer-

den kann ist diese mögliche Einflussnahme geringer. Dessen Unsicherheit hängt zwar 

ebenfalls von Erzeugungs- und Verbrauchsprognosen ab, dessen Nutzung spielt aber 

nicht unmittelbar für den Komfort des Nutzers eine Rolle. Bei den Elektroautos wiederum, 

ist aufgrund der Unterbrechungen durch den Nutzer und die verkürzten Nutzungszeiten 

das Flexibilitäts- und Verschiebepotential stark verringert.  Die Simulationen haben ge-

zeigt, dass es sich lohnt, das vorgeschlagene Pooling weiterhin durch Forschungsarbeit zu 

verfolgen und die weiteren Demonstrationen im Projekt umzusetzen. Durch die Demonst-

rationen lässt sich feststellen, wie sehr sich die Ergebnisse der Simulationen auf den Re-

albetrieb umlegen lassen und welche Herausforderungen bei der Umsetzung auftreten.  
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13 Ergebnistabellen Anhang 

13.1 Batteriepool 

13.1.1  DA 

Zeitraum 1 

KPI Einheit Referenzszenario DA Markt 

Negative Regelenergie EUR/kW 0 0 

Positive Regelenergie EUR/kW 0  

Day-Ahead Markt 
Käufe 

EUR/kW 26,00 24,68 

Day-Ahead Markt Ver-
käufe 

EUR/KW -17,99 -18.82 

Intraday Markt Käufe EUR/kW 0 0 

Intraday Markt Ver-

käufe 
EUR/kW 0 0 

Netzkosten und Abga-
ben 

EUR/Jahr 50,34 51,20 

Gesamtkosten EUR/kW 58,35 57,06 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW  -1,29 

 

KPI Einheit Referenzszenario DA Markt  

Negative Regelenergie kWh/kW 0 0 

Positive Regelenergie kWh/kW 0 0 

Day-Ahead Markt 

Käufe 
kWh/kW 

729,48 741,86 

Day-Ahead Markt Ver-
käufe 

kWh/kW 
424,82 423,61 

Intraday Markt Käufe kWh/kW 0 0 

Intraday Markt Ver-
käufe 

kWh/kW 
0 0 

Gesamtverbrauch kWh/kW 1154,3 1165,47 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
 

11,17 
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Zeitraum 2 

KPI Einheit Referenzszenario DA Markt  

Negative Regelenergie EUR/kW 0 0 

Positive Regelenergie EUR/kW 0 0 

Day-Ahead Markt 
Käufe 

EUR/kW 50,49 49,31 

Day-Ahead Markt Ver-
käufe 

EUR/kW -10,59 -11,39 

Intraday Markt Käufe EUR/kW 0 0 

Intraday Markt Ver-
käufe 

EUR/kW 0 0 

Netzkosten und Abga-
ben 

EUR/kW 64,34 65,21 

Gesamtkosten EUR/kW 104,24 103,13 

Gesamtersparnisse im 

Vergleich zum Refe-
renzszenario 

EUR/kW 

 

 
-1,11 

 

KPI Einheit Referenzszenario DA Markt  

Negative Regelenergie kWh/kW   

Positive Regelenergie kWh/kW   

Day-Ahead Markt 
Käufe 

kWh/kW 
932,42 944,79 

Day-Ahead Markt Ver-
käufe 

kWh/KW 
317,71 315,26 

Intraday Markt Käufe kWh/kW   

Intraday Markt Ver-

käufe 
kWh/kW 

0 0 

Gesamtverbrauch kWh/kW 1250,13 1260,05 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
 

9,92 

 

 

13.1.2  PRL+DA+ID 

Zeitraum 1 
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KPI Einheit Referenzszenario PRL+DA+ID 

Negative Regelenergie EUR/kW 0 -1,94 

Positive Regelenergie EUR/kW 0 (-1,94) 

Day-Ahead Markt 
Käufe 

EUR/kW 26,00 25,80 

Day-Ahead Markt Ver-
käufe 

EUR/KW -17,99 -18,96 

Intraday Markt Käufe EUR/kW 0 1,26 10-4 

Intraday Markt Ver-

käufe 
EUR/kW 0 -2,55 10-4 

Netzkosten und Abga-
ben 

EUR/Jahr 50,34 50,27 

Gesamtkosten EUR/kW 58,35 55,17 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 

 

 
-3,18 

 

KPI Einheit Referenzszenario PRL+DA+ID 

Negative Regelenergie4 kWh/kW 0 176,68 (10,59) 

Positive Regelenergie4 kWh/kW 0 176,68 (2,34)  

Day-Ahead Markt 

Käufe 
kWh/kW 

729,48 727,86 

Day-Ahead Markt Ver-
käufe 

kWh/kW 
424,82 432,22 

Intraday Markt Käufe kWh/kW  2,70 10-3 

Intraday Markt Ver-
käufe 

kWh/kW 
0 4,70 10-3 

Gesamtverbrauch kWh/kW 1154,3 1513,40 (1173,00) 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
 

359,10 (18,70) 

 

Zeitraum 2 

KPI Einheit 
Referenzszena-
rio 

PRL+DA+ID - Markt 

Negative Regelener-
gie 

EUR/kW 0 -2,40 
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Positive Regelener-
gie 

EUR/kW 0 (-2,40) 

Day-Ahead Markt 

Käufe 
EUR/kW 50,49 50,40 

Day-Ahead Markt 
Verkäufe 

EUR/KW -10,59 -11,49 

Intraday Markt 
Käufe 

EUR/kW 0 2,03 10-4 

Intraday Markt Ver-
käufe 

EUR/kW 0 -9,49 10-5 

Netzkosten und Ab-
gaben 

EUR/kW 64,34 64,34 

Gesamtkosten EUR/kW 104,24 100,85 

Gesamtersparnisse 
im Vergleich zum 
Referenzszenario 

EUR/kW 

 

 
 -3,39 

 

KPI Einheit Referenzszenario PRL+DA+ID - Markt 

Negative Regelenergie4 kWh/kW  217,99 (11,04) 

Positive Regelenergie4 kWh/kW  217,99 (4,16) 

Day-Ahead Markt 
Käufe 

kWh/kW 
932,42 931,91 

Day-Ahead Markt Ver-
käufe 

kWh/KW 
317,71 325,01 

Intraday Markt Käufe kWh/kW  4,70 10-3 

Intraday Markt Ver-
käufe 

kWh/kW 
0 1,70 10-3 

Gesamtverbrauch kWh/kW 1250,13 1692,90 (1272,10) 

Gesamtverbrauch im 

Vergleich zum Refe-

renzszenario 

kWh/kW 

 

442,77 (21,97) 

 

13.1.3  SRL+DA+ID 

Zeitraum 1 

KPI Einheit Referenzszenario SRL+DA+ID - Markt 

Negative Regelenergie EUR/kW 0 -10,57 

Positive Regelenergie EUR/kW 0 -1,97 
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Day-Ahead Markt 
Käufe 

EUR/kW 26,00 24,67 

Day-Ahead Markt Ver-

käufe 
EUR/KW -17,99 -18,77 

Intraday Markt Käufe EUR/kW 0 0,50 10-2 

Intraday Markt Ver-
käufe 

EUR/kW 0 -1,43 10-4 

Netzkosten und Abga-
ben 

EUR/kW 50,34 47,91 

Gesamtkosten EUR/kW 58,35 41,28 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 

 

 
-17,07 

 

KPI Einheit Referenzszenario SRL+DA+ID - Markt 

Negative Regelenergie4 kWh/kW 0 707,90 (44,78) 

Positive Regelenergie4 kWh/kW 0 147,52 (3,84) 

Day-Ahead Markt 

Käufe 
kWh/kW 

729,48 693,99 

Day-Ahead Markt Ver-
käufe 

kWh/kW 
424,82 426,86 

Intraday Markt Käufe kWh/kW 0 0,16 

Intraday Markt Ver-
käufe 

kWh/kW 
0 1,42 10-2 

Gesamtverbrauch4 kWh/kW 
1154,3 1976,40 (1169,60) 

 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario4 

kWh/kW 
 

822,10 (15,30) 

 

Zeitraum 1 (Nur negative RE in den ersten beiden 4h-Blöcken) 

KPI Einheit Referenzszenario 

SRL+DA+ID – Markt (nur ne-

gative RE in den ersten bei-

den 4h-Blöcken) 

Negative Regelenergie EUR/kW 0 -6,35 

Positive Regelenergie EUR/kW 0 0 

                                           

4 Die aktivierte Energie ist in Klammern angegeben. 
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Day-Ahead Markt 
Käufe 

EUR/kW 26,00 25,46 

Day-Ahead Markt Ver-

käufe 
EUR/KW -17,99 -18,82 

Intraday Markt Käufe EUR/kW 0 0,00 

Intraday Markt Ver-
käufe 

EUR/kW 0 0,00 

Netzkosten und Abga-
ben 

EUR/kW 50,34 49,48 

Gesamtkosten EUR/kW 58,35 49,77 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 

 

 
-8,58 

 

KPI Einheit Referenzszenario 

SRL+DA+ID – Markt (nur ne-

gative RE in den ersten bei-

den 4h-Blöcken) 

Negative Regelenergie5 kWh/kW 0 345,01 (17,84) 

Positive Regelenergie4 kWh/kW 0 0,00 (0,00) 

Day-Ahead Markt 

Käufe 
kWh/kW 

729,48 716,87 

Day-Ahead Markt Ver-

käufe 
kWh/kW 

424,82 428,52 

Intraday Markt Käufe kWh/kW 0 0,00 

Intraday Markt Ver-
käufe 

kWh/kW 
0 0,00 

Gesamtverbrauch4 kWh/kW 
1154,3 1490,40 (1163,20) 

 

Gesamtverbrauch im 

Vergleich zum Refe-

renzszenario4 

kWh/kW 

 

336,10 (8,90) 

 

 

 

Zeitraum 2 

KPI Einheit 
Referenzszena-
rio 

SRL+DA+ID - Markt 

                                           

5 Die aktivierte Energie ist in Klammern angegeben. 
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Negative Regelener-
gie 

EUR/kW 0 -2,91 

Positive Regelener-

gie 
EUR/kW 0 -0,61 

Day-Ahead Markt 
Käufe 

EUR/kW 50,49 46,32 

Day-Ahead Markt 
Verkaüfe 

EUR/kW -10,59 -11,28 

Intraday Markt 
Käufe 

EUR/kW 0 1,60 10-3 

Intraday Markt Ver-
käufe 

EUR/kW 0 -1,70 10-3 

Netzkosten und Ab-
gaben 

EUR/kW 64,34 59,42 

Gesamtkosten EUR/kW 104,24 90,94 

Gesamtersparnisse 
im Vergleich zum 

Referenzszenario 

EUR/kW 

 

 
 -13,30 

 

KPI Einheit Referenzszenario SRL+DA+ID - Markt 

Negative Regelenergie4 kWh/kW  639,89 (85,13) 

Positive Regelenergie4 kWh/kW  36,93 (8,31) 

Day-Ahead Markt 
Käufe 

kWh/kW 
932,42 861,05 

Day-Ahead Market Ver-
käufe 

kWh/kW 
317,71 317,11 

Intraday Markt Käufe kWh/kW 0 2,99 10-2 

Intraday Markt Ver-
käufe 

kWh/kW 
0 3,45 10-2 

Gesamtverbrauch kWh/kW 1250,13 1855,00 (1271,70) 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
 

604,87 (21,57) 

 

Zeitraum 2 (Nur negative RE in den ersten beiden 4h-Blöcken) 

KPI Einheit 
Referenzszena-

rio 

SRL+DA+ID – Markt (nur 

negative RE in den ers-

ten beiden 4h-Blöcken) 
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Negative Regelener-
gie 

EUR/kW 0 -2,75 

Positive Regelener-

gie 
EUR/kW 0 0,00 

Day-Ahead Markt 
Käufe 

EUR/kW 50,49 48,73 

Day-Ahead Markt 
Verkaüfe 

EUR/kW -10,59 -11,48 

Intraday Markt 
Käufe 

EUR/kW 0 0,00 

Intraday Markt Ver-
käufe 

EUR/kW 0 0,00 

Netzkosten und Ab-
gaben 

EUR/kW 64,34 61,99 

Gesamtkosten EUR/kW 104,24 96,38 

Gesamtersparnisse 
im Vergleich zum 

Referenzszenario 

EUR/kW 

 

 
 -7,86 

 

KPI Einheit Referenzszenario 

SRL+DA+ID – Markt (nur ne-

gative RE in den ersten bei-

den 4h-Blöcken) 

Negative Regelenergie4 kWh/kW  310,49 (43,56) 

Positive Regelenergie4 kWh/kW  0,00 (0,00) 

Day-Ahead Markt 
Käufe 

kWh/kW 
932,42 898,10 

Day-Ahead Market Ver-

käufe 
kWh/kW 

317,71 323,24 

Intraday Markt Käufe kWh/kW 0 0,00 

Intraday Markt Ver-

käufe 
kWh/kW 

0 0,00 

Gesamtverbrauch kWh/kW 1250,13 1531,80 (1264,90) 

Gesamtverbrauch im 

Vergleich zum Refe-
renzszenario 

kWh/kW 

 

281,67 (14,77) 
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13.1.4  TRL+DA+ID 

Zeitraum 1 

KPI Einheit 
Referenzszena-
rio 

TRL+DA+ID - Markt 

Negative Regelener-
gie 

EUR/kW 0 -0,39 

Positive Regelener-
gie 

EUR/kW 0 -2,12 10-2 

Day-Ahead Markt 
Käufe 

EUR/kW 26,00 25,93 

Day-Ahead Markt 
Verkäufe 

EUR/KW -17,99 -18,77 

Intraday Markt 

Käufe 
EUR/kW  2,98 10-4 

Intraday Markt Ver-
käufe 

EUR/kW  0 

Netzkosten und Ab-
gaben 

EUR/kW 50,34 50,49 

Gesamtkosten EUR/kW 58,35 57,24 

Gesamtersparnisse 

im Vergleich zum 

Referenzszenario 

EUR/kW 

 

 
 -1,11 

 

KPI Einheit Referenzszenario TRL+DA+ID - Markt 

Negative Regelenergie4 kWh/kW 0 428,61 (0) 

Positive Regelenergie4 kWh/kW 0 57,14 (0) 

Day-Ahead Markt 
Käufe 

kWh/kW 
729,48 

731,57 

Day-Ahead Markt Ver-
käufe 

kWh/kW 
424,82 

427,22 

Intraday Markt Käufe kWh/kW  5,50 10-3 

Intraday Markt Ver-

käufe 
kWh/kW 

 
0 

Gesamtverbrauch4 kWh/kW 1154,3 1644,50 (1158,80) 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario4 

kWh/kW 
 

490,20 (4,50) 

 

Zeitraum 2 
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KPI Einheit 
Referenzszena-
rio 

TRL+DA+ID - Markt 

Negative Regelener-
gie 

EUR/kW 0 -1,31 

Positive Regelener-
gie 

EUR/kW 0 -3,97 10-2 

Day-Ahead Markt 
Käufe 

EUR/kW 50,49 50,48 

Day-Ahead Markt 

Verkäufe 
EUR/kW -10,59 -11,33 

Intraday Markt 
Käufe 

EUR/kW 0 3,64 10-4 

Intraday Markt Ver-
käufe 

EUR/kW 0 0 

Netzkosten und Ab-
gaben 

EUR/kW 64,34 64,48 

Gesamtkosten EUR/kW 104,24 102,28 

Gesamtersparnisse 
im Vergleich zum 
Referenzszenario 

EUR/kW 

 

 
 -1,96 

 

KPI Einheit Referenzszenario TRL+DA+ID - Markt 

Negative Regelenergie kWh/kW  885,89 (0) 

Positive Regelenergie kWh/kW  72,30 (0) 

Day-Ahead Markt 
Käufe 

kWh/kW 
932,42 934,41 

Day-Ahead Markt Ver-
käufe 

kWh/kW 
317,71 320,06 

Intraday Markt Käufe kWh/kW  1,00 10-2 

Intraday Markt Ver-

käufe 
kWh/kW 

0 0 

Gesamtverbrauch kWh/kW 1250,13 2212,70 (1254,50) 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
 

962,57 (4,37) 
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13.1.5  DA+ID 

KPI Einheit Referenzszenario DA+ID - Markt 

Negative Regelenergie EUR/kW 0 0 

Positive Regelenergie EUR/kW 0 0 

Day-Ahead Markt 
Käufe 

EUR/kW 3,36 2,92 

Day-Ahead Markt Ver-

käufe 
EUR/KW -6,40 10-3 -9,14 10-5 

Intraday Markt Käufe EUR/kW 0 0,2476 

Intraday Markt Ver-
käufe 

EUR/kW 0 -9,20 10-3 

Netzkosten und Abga-
ben 

EUR/kW 5,64 5,73 

Gesamtkosten EUR/kW 8,99 8,89 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 

 

 
-0,10 

 

KPI Einheit Referenzszenario DA+ID - Markt 

Negative Regelenergie kWh/kW 0 0 

Positive Regelenergie kWh/kW 0 0 

Day-Ahead Markt 
Käufe 

kWh/kW 
81,70 71,79 

Day-Ahead Markt Ver-
käufe 

kWh/kW 
0,16 2,30 10-3 

Intraday Markt Käufe kWh/kW 0 11,25 

Intraday Markt Ver-
käufe 

kWh/kW 
0 0,17 

Gesamtverbrauch kWh/kW 
81,86 83,21 

 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
 

 
1,35 

 

 

13.1.6  CO2-Vergleich 

Zeitraum 2 
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KPI Einheit Referenzszenario DA - Markt 

Negative Regelenergie EUR/kW 0 0 

Positive Regelenergie EUR/kW 0 0 

Day-Ahead Markt 
Käufe 

EUR/kW 50,49 50,52 

Day-Ahead Markt Ver-
käufe 

EUR/kW -10,59 -10,65 

Intraday Markt Käufe EUR/kW 0 0 

Intraday Markt Ver-

käufe 
EUR/kW 0 0 

Netzkosten und Abga-
ben 

EUR/kW 64,34 64,56 

Gesamtkosten EUR/kW 104,24 104,43 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 
 
 

0,19 

 

KPI Einheit Referenzszenario DA - Markt 

Negative Regelenergie kWh/kW  0 

Positive Regelenergie kWh/kW  0 

Day-Ahead Markt 

Käufe 
kWh/kW 

932,42 935,50 

Day-Ahead Markt Ver-
käufe 

kWh/kW 
317,71 315,96 

Intraday Markt Käufe kWh/kW  0 

Intraday Markt Ver-
käufe 

kWh/kW 
0 0 

Gesamtverbrauch kWh/kW 1250,13 1251,46 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
 

1,33 
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13.2 Boilerpool 

13.2.1 DA 

Zeitraum 1 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie EUR/kW 0 0 

Positive Regelenergie EUR/kW 0 0 

Day-Ahead Markt 
Käufe 

EUR/kW 13,82 8,135 

Intraday Markt Käufe EUR/kW 0 0 

Intraday Markt Ver-
käufe 

EUR/kW 0 0 

Netzkosten und Abga-

ben 
EUR/Jahr 46,64 48,14 

Gesamtkosten EUR/kW 60,46 56,27 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 

 
4,195 

 
 

 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie kWh/kW 0 0 

Positive Regelenergie kWh/kW 0 0 

Day-Ahead Markt 
Käufe 

kWh/kW 
 

349,50 

 

360,70 

Intraday Markt Käufe kWh/kW 0 0 

Intraday Markt Ver-
käufe 

kWh/kW 
0 0 

Gesamtverbrauch kWh/kW 

 

349,50 

 

 

360,70 

Gesamtverbrauch im 
Vergleich zum Refe-

renzszenario 

kWh/kW 
 

11,2 
 

 

Zeitraum 2 

KPI Einheit Referenzszenario Day-Ahead- Markt 
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Negative Regelenergie EUR/kW 0 0 

Positive Regelenergie EUR/kW 0 0 

Day-Ahead Markt 

Käufe 
EUR/kW 14,41 

10,03 

 

Intraday Markt Käufe EUR/kW 0 0 

Intraday Markt Ver-
käufe 

EUR/kW 0 0 

Netzkosten und Abga-
ben 

EUR/Jahr 42,32 
43,57 

 

Gesamtkosten EUR/kW 56,73954 
53,60 

 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 
3,135537 

 
 

 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie kWh/kW 0 0 

Positive Regelenergie kWh/kW 0 0 

Day-Ahead Markt 
Käufe 

kWh/kW 
 

317,15 

326,49 

 

Intraday Markt Käufe kWh/kW 0 0 

Intraday Markt Ver-

käufe 
kWh/kW 

0 0 

Gesamtverbrauch kWh/kW 
317,15 326,49 

 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
9,34617 

 
 

13.2.2 SRL+DA+ID 

Zeitraum 1 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie EUR/kW 0 
2,75 
 

Positive Regelenergie EUR/kW 0 
2,39 
 

Day-Ahead Markt 
Käufe 

EUR/kW 13,82 
9,40 
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Intraday Markt Käufe EUR/kW 0 
44,25 
 

Intraday Markt Ver-
käufe 

EUR/kW 0 

23,3 

 

Netzkosten und Abga-
ben 

EUR/Jahr 46,64 
45,00 

 

Gesamtkosten EUR/kW 60,46 
49,26 

 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 
11,2067 

 
 

 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie kWh/kW 
0 

205,64 

 

Positive Regelenergie kWh/kW 
0 

116,20 

 

Day-Ahead Markt 
Käufe 

kWh/kW 
 

349,50 

333,12 

 

Intraday Markt Käufe kWh/kW 
0 

5866,90 

 

Intraday Markt Ver-
käufe 

kWh/kW 
0 

3858,41 

Gesamtverbrauch kWh/kW 

 

349,50 

 

433,73 

 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
84,2356 

 
 

 

Zeitraum 2 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie EUR/kW 0 
0,46 

 

Positive Regelenergie EUR/kW 0 
1,28 

 

Day-Ahead Markt 
Käufe 

EUR/kW 14,41 
10,67 
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Intraday Markt Käufe EUR/kW 0 
67,509 

 

Intraday Markt Ver-

käufe 
EUR/kW 0 

44,34 

 

Netzkosten und Abga-
ben 

EUR/Jahr 42,32 
40,07 

 

Gesamtkosten EUR/kW 56,73954 
49,00 

 

Gesamtersparnisse im 

Vergleich zum Refe-

renzszenario 

EUR/kW 
7,733918 

 
 

 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie kWh/kW 
0 

200,43 

 

Positive Regelenergie kWh/kW 0 
101,28 

Day-Ahead Markt 

Käufe 
kWh/kW 

 

317,15 

300,03 

 

Intraday Markt Käufe kWh/kW 
0 

7734,58 

 

Intraday Markt Ver-
käufe 

kWh/kW 
0 

7417,23 

 

Gesamtverbrauch kWh/kW 
317,15 400,93 

 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
83,7916 

 
 

 

13.2.3  TRL+DA+ID 

Zeitraum 1 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie EUR/kW 0 
0,24 
 

Positive Regelenergie EUR/kW 0 
0 
 

Day-Ahead Markt 
Käufe 

EUR/kW 13,82 
8,19454 

 

Intraday Markt Käufe EUR/kW 0 0 
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Intraday Markt Ver-
käufe 

EUR/kW 0 0 

Netzkosten und Abga-

ben 
EUR/Jahr 46,64 

48,21 

 

Gesamtkosten EUR/kW 60,46 
56,16 

 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 
4,311762 

 
 

 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie kWh/kW 
0 

74,58 

 

Positive Regelenergie kWh/kW 
0 

0,229 

 

Day-Ahead Markt 

Käufe 
kWh/kW 

 

349,50 

361,21 

 

Intraday Markt Käufe kWh/kW 0 0 

Intraday Markt Ver-

käufe 
kWh/kW 

0 0 

Gesamtverbrauch kWh/kW 

 

349,50 

 

435,60 

 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
86,06651 

 
 

 

Zeitraum 2 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie EUR/kW 0 
0,04 
 

Positive Regelenergie EUR/kW 0 
0 

 

Day-Ahead Markt 
Käufe 

EUR/kW 14,41 
10,05 

 

Intraday Markt Käufe EUR/kW 0 0 

Intraday Markt Ver-
käufe 

EUR/kW 0 0 
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Netzkosten und Abga-
ben 

EUR/Jahr 42,32 
43,57 

 

Gesamtkosten EUR/kW 56,73954 
53,59 

 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 
3,152002 

 
 

 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie kWh/kW 
0 

28,51 

 

Positive Regelenergie kWh/kW 
0 

0,56 

 

Day-Ahead Markt 
Käufe 

kWh/kW 
 

317,15 

326,51 

 

Intraday Markt Käufe kWh/kW 0 0 

Intraday Markt Ver-
käufe 

kWh/kW 
0 0 

Gesamtverbrauch kWh/kW 
317,15 354,47 

 

Gesamtverbrauch im 
Vergleich zum Refe-

renzszenario 

kWh/kW 
37,3268 

 
 

13.2.4  DA+ID 

KPI Einheit Referenzszenario 
Day-Ahead-und Intraday-

Markt 

Day-Ahead Markt 
Käufe 

EUR/kW 0,59 0,42 

Intraday Markt Käufe EUR/kW 0 0,50 

Intraday Markt Ver-
käufe 

EUR/kW 0 0,75 

Netzkosten und Abga-
ben 

EUR/kW 1,76 1,88 

Gesamtkosten EUR/kW 2,35 2,05 

Gesamtersparnisse im 

Vergleich zum Refe-
renzszenario 

EUR/kW 0,28  
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KPI Einheit Referenzszenario 
Day-Ahead-und Intraday-
Markt 

Day-Ahead Markt 

Käufe 
kWh/kW 13,18 13,45482242 

Intraday Markt Käufe kWh/kW 0 29,24 

Intraday Markt Ver-
käufe 

kWh/kW 0 28,62 

Gesamtverbrauch kWh/kW 13,18 14,0791 

Gesamtverbrauch im 
Vergleich zum Refe-

renzszenario 

kWh/kW 0,89  

 

 

13.2.5 CO2 Vergleich  

KPI Einheit Referenzszenario CO2 

Negative Regelenergie EUR/kW 0 0 

Positive Regelenergie EUR/kW 0 0 

Day-Ahead Markt 

Käufe 
EUR/kW 14,41 14,51 

Intraday Markt Käufe EUR/kW 0 0 

Intraday Markt Ver-
käufe 

EUR/kW 0 0 

Netzkosten und Abga-
ben 

EUR/kW 42,33 44,92 

Gesamtkosten EUR/kW 56,73 59,44 

Gesamtersparnisse im 
Vergleich zum Refe-

renzszenario 

EUR/kW -2,70  

 

KPI Einheit Referenzszenario CO2 

Negative Regelenergie kWh/kW 0 0 

Positive Regelenergie kWh/kW 0 0 

Day-Ahead Markt 

Käufe 
kWh/kW 317,14 336,61 

Intraday Markt Käufe kWh/kW 0 0 
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Intraday Markt Ver-
käufe 

kWh/kW 0 0 

Gesamtverbrauch kWh/kW 317,14 336,61 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 19,47  

 

KPI Einheit Referenzszenario CO2 

Negative Regelenergie kg/kW 0 0 

Positive Regelenergie kg/kW 0 0 

Day-Ahead Markt 
Käufe 

kg/kW 46,38 38,17 

Intraday Markt Käufe kg/kW 0 0 

Intraday Markt Ver-
käufe 

kg/kW 0 0 

Gesamtverbrauch kg/kW 46,38 38,17 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kg/kW -8,21  

13.2.6  Vergleich von stündlichen und ¼-stündlichen Marktpreisen 

 

KPI Einheit Ref-1h Ref-1/4h DA-1h DA-1/4h 

Negative Regelener-
gie 

EUR/kW 0 0 0 0 

Positive Regelenergie EUR/kW 0 0 0 0 

Day-Ahead Markt 

Käufe 
EUR/kW 14,41 14,48 10,03 5,38 

Intraday Markt Käufe EUR/kW 0 0 0 0 

Intraday Markt Ver-
käufe 

EUR/kW 0 0 0 0 

Netzkosten und Ab-
gaben 

EUR/Jahr 42,32 42,33 43,57 43,50 

Gesamtkosten EUR/kW 56,73 56,81 53,60 48,88 

Gesamtersparnisse 
mit 1h-Preisen 

EUR/kW 3,13 
 

 
 

Gesamtersparnisse 
mit 1/4h-Preisen 

Euro/kW 7,93 
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13.3 E-Auto-Pool 

13.3.1 DA 

Zeitraum 1 

Tabelle 23: Case Study E-Mobility-Pool - Day-Ahead-Szenario– Zeitraum 1 

KPI Einheit 
Referenz-

szenario 

Day-Ahead-

Szenario 

Day-Ahead Markt Käufe EUR/kW/Jahr 7,92 7,11 

Day-Ahead Markt Verkäufe EUR/kW/Jahr 0 0 

Netzkosten und Abgaben EUR/kW/Jahr 24,74 24,96 

Gesamtkosten EUR/kW/Jahr 32,66 32,07 

Differenz der Gesamtkosten im Vergleich 

zum Referenzszenario 
EUR/kW/Jahr  -0,59 

Day-Ahead Markt Käufe kWh/kW/Jahr 210,42 213,74 

Day-Ahead Markt Verkäufe kWh/kW/Jahr 0 0 

Gesamtverbrauch kWh/kW/Jahr 210,42 213,74 

Differenz des Gesamtverbrauchs im Ver-

gleich zum Referenzszenario 
kWh/kW/Jahr  3,32 

Tabelle 24: Case Study E-Mobility-Pool - Day-Ahead-Szenario– Zeitraum 1 – Parameter-

variation 

KPI Einheit 

Referenzszenario 

mit Parameterva-

riation 

Day-Ahead-Szenario 

mit Parametervaria-

tion 

Day-Ahead Markt Käufe EUR/kW/Jahr 3,16 2,75 

Day-Ahead Markt Verkäufe EUR/kW/Jahr 0 0 

Netzkosten und Abgaben EUR/kW/Jahr 9,78 9,87 

Gesamtkosten EUR/kW/Jahr 12,94 12,63 

Differenz der Gesamtkosten 

im Vergleich zum Referenz-

szenario 

EUR/kW/Jahr  -0,31 

Day-Ahead Markt Käufe kWh/kW/Jahr 82,99 84,4 

Day-Ahead Markt Verkäufe kWh/kW/Jahr 0 0 
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Gesamtverbrauch kWh/kW/Jahr 82,99 84,4 

Differenz des Gesamtver-

brauchs im Vergleich zum 

Referenzszenario 

kWh/kW/Jahr  1,41 

Szenario 2 

Tabelle 25: Case Study E-Mobility-Pool - Day-Ahead-Szenario– Zeitraum 2 

KPI Einheit 
Referenz-

szenario 

Day-Ahead-

Szenario 

Day-Ahead Markt Käufe EUR/kW/Jahr 9,09 8,12 

Day-Ahead Markt Verkäufe EUR/kW/Jahr 0 0 

Netzkosten und Abgaben EUR/kW/Jahr 24,98 25,25 

Gesamtkosten EUR/kW/Jahr 34,08 33,37 

Differenz der Gesamtkosten im Vergleich 

zum Referenzszenario 
EUR/kW/Jahr  -0,71 

Day-Ahead Markt Käufe kWh/kW/Jahr 214,1 218,1 

Day-Ahead Markt Verkäufe kWh/kW/Jahr 0 0 

Gesamtverbrauch kWh/kW/Jahr 214,1 218,1 

Differenz des Gesamtverbrauchs im Ver-

gleich zum Referenzszenario 
kWh/kW/Jahr  4,01 

Tabelle 26: Case Study E-Mobility-Pool - Day-Ahead-Szenario– Zeitraum 2 - Parameter-

variation 

KPI Einheit 

Referenzszenario 

mit Parameterva-

riation 

Day-Ahead-Szenario 

mit Parametervaria-

tion 

Day-Ahead Markt Käufe EUR/kW/Jahr 3,62 3,14 

Day-Ahead Markt Verkäufe EUR/kW/Jahr 0 0 

Netzkosten und Abgaben EUR/kW/Jahr 9,87 10 

Gesamtkosten EUR/kW/Jahr 13,49 13,15 

Differenz der Gesamtkosten 

im Vergleich zum Referenz-

szenario 

EUR/kW/Jahr  -0,35 

Day-Ahead Markt Käufe kWh/kW/Jahr 84,39 86,32 
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Day-Ahead Markt Verkäufe kWh/kW/Jahr 0 0 

Gesamtverbrauch kWh/kW/Jahr 84,39 86,32 

Differenz des Gesamtver-

brauchs im Vergleich zum 

Referenzszenario 

kWh/kW/Jahr  1,93 

Tabelle 27: Case Study E-Mobility-Pool - Minimal CO2 – Szenario – Zeitraum 2 

KPI Einheit 
Referenz-

szenario 

Day-Ahead 

Szenario 

Minimal CO2 

Szenario 

Day-Ahead Markt 

Käufe 
EUR/kW/Jahr 9,09 8,12 9,97 

Day-Ahead Markt Ver-

käufe 
EUR/kW/Jahr 0 0 0 

Netzkosten und Abga-

ben 
EUR/kW/Jahr 24,98 25,25 25,62 

Gesamtkosten EUR/kW/Jahr 34,08 33,37 35,59 

Differenz zum Refe-

renzszenario 
EUR/kW/Jahr  -0,71 1,51 

Day-Ahead Markt 

Käufe 
kWh/kW/Jahr 214,1 218,1 223,7 

Day-Ahead Markt Ver-

käufe 
kWh/kW/Jahr 0 0 0 

Gesamtverbrauch kWh/kW/Jahr 214,1 218,1 223,7 

Differenz zum Refe-

renzszenario 
kWh/kW/Jahr  4,01 9,6 

CO2 Fußabdruck kgCO2/kW/Jahr 43,22 44,43 40,52 

Differenz zum Refe-

renzszenario 
kgCO2/kW/Jahr  1,21 -2,7 

Tabelle 28: Case Study E-Mobility-Pool - Minimal CO2 – Szenario – Zeitraum 2 – Parame-

tervariation  

KPI Einheit 

Referenzszena-

rio mit Para-

metervariation 

Day-Ahead 

Szenario mit Pa-

rametervariation 

Minimal CO2 

Szenario mit Pa-

rametervaria-

tion 
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Day-Ahead 

Markt Käufe 
EUR/kW/Jahr 3,62 3,14 3,96 

Day-Ahead 

Markt Ver-

käufe 

EUR/kW/Jahr 0 0 0 

Netzkosten 

und Abgaben 
EUR/kW/Jahr 9,87 10 10,13 

Gesamtkos-

ten 
EUR/kW/Jahr 13,49 13,15 14,09 

Differenz zum 

Referenzsze-

nario 

EUR/kW/Jahr  -0,35 0,6 

Day-Ahead 

Markt Käufe 
kWh/kW/Jahr 84,39 86,32 88,26 

Day-Ahead 

Markt Ver-

käufe 

kWh/kW/Jahr 0 0 0 

Gesamtver-

brauch 
kWh/kW/Jahr 84,39 86,32 88,26 

Differenz zum 

Referenzsze-

nario 

kWh/kW/Jahr  1,93 3,87 

CO2 Fußab-

druck 
kgCO2/kW/Jahr 17,02 17,58 15,8 

Differenz zum 

Referenzsze-

nario 

kgCO2/kW/Jahr  0,56 -1,21 

Tabelle 29: Case Study E-Mobility-Pool - Use Case 2 – Zeitraum 1 

KPI Einheit 
Referenz-

szenario 

Sekundärregel-, Day-

Ahead-und Intraday-

Markt 

Negative Regelenergie EUR/kW/Jahr  -3,76 

Positive Regelenergie EUR/kW/Jahr  -0,39 

Day-Ahead Markt Käufe EUR/kW/Jahr 7,92 6,47 

Day-Ahead Markt Verkäufe EUR/kW/Jahr 0 0 
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Intraday Markt Käufe EUR/kW/Jahr  1,55 

Intraday Markt Verkäufe EUR/kW/Jahr  -0,74 

Netzkosten und Abgaben EUR/kW/Jahr 24,74 22,93 

Gesamtkosten EUR/kW/Jahr 32,66 26,07 

Differenz der Gesamtkosten im 

Vergleich zum Referenzszenario 
EUR/kW/Jahr  -6,59 

Negative Regelenergie kWh/kW/Jahr  35,18 

Positive Regelenergie kWh/kW/Jahr  1,95 

Day-Ahead Markt Käufe kWh/kW/Jahr 210,42 170,58 

Day-Ahead Markt Verkäufe kWh/kW/Jahr 0 0 

Intraday Markt Käufe kWh/kW/Jahr  37,97 

Intraday Markt Verkäufe kWh/kW/Jahr  20,85 

Gesamtverbrauch kWh/kW/Jahr 210,42 220,93 

Differenz des Gesamtverbrauchs 

im Vergleich zum Referenzszena-

rio 

kWh/kW/Jahr  10,51 

Tabelle 30: Case Study E-Mobility-Pool - Use Case 2 – Zeitraum 1 - Parametervariation 

KPI Einheit 

Referenzszena-

rio mit Parame-

tervariation 

Sekundärregel-, Day-

Ahead-und Intraday-

Markt mit Parametervari-

ation 

Negative Regelenergie EUR/kW/Jahr  -1,63 

Positive Regelenergie EUR/kW/Jahr  -0,14 

Day-Ahead Markt Käufe EUR/kW/Jahr 3,16 2,55 

Day-Ahead Markt Ver-

käufe 
EUR/kW/Jahr 0 0 

Intraday Markt Käufe EUR/kW/Jahr  0,61 

Intraday Markt Verkäufe EUR/kW/Jahr  -0,28 

Netzkosten und Abgaben EUR/kW/Jahr 9,78 9,11 

Gesamtkosten EUR/kW/Jahr 12,94 10,22 
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Differenz der Gesamtkos-

ten im Vergleich zum Re-

ferenzszenario 

EUR/kW/Jahr  -2,72 

Negative Regelenergie kWh/kW/Jahr  13,53 

Positive Regelenergie kWh/kW/Jahr  0,75 

Day-Ahead Markt Käufe kWh/kW/Jahr 82,99 67,55 

Day-Ahead Markt Ver-

käufe 
kWh/kW/Jahr 0 0 

Intraday Markt Käufe kWh/kW/Jahr  14,95 

Intraday Markt Verkäufe kWh/kW/Jahr  7,95 

Gesamtverbrauch kWh/kW/Jahr 82,99 87,33 

Differenz des Gesamtver-

brauchs im Vergleich zum 

Referenzszenario 

kWh/kW/Jahr  4,34 

Tabelle 31: Case Study E-Mobility-Pool - Use Case 2 – Zeitraum 2 

KPI Einheit 
Referenz-

szenario 

Sekundärregel-, Day-

Ahead-und Intraday-

Markt 

Negative Regelenergie EUR/kW/Jahr  -0,25 

Positive Regelenergie EUR/kW/Jahr  -0,09 

Day-Ahead Markt Käufe EUR/kW/Jahr 9,09 6,69 

Day-Ahead Markt Verkäufe EUR/kW/Jahr 0 0 

Intraday Markt Käufe EUR/kW/Jahr  1,74 

Intraday Markt Verkäufe EUR/kW/Jahr  -0,94 

Netzkosten und Abgaben EUR/kW/Jahr 24,98 22,55 

Gesamtkosten EUR/kW/Jahr 34,08 29,7 

Differenz der Gesamtkosten im 

Vergleich zum Referenzszenario 
EUR/kW/Jahr  -4,37 

Negative Regelenergie kWh/kW/Jahr  43,57 

Positive Regelenergie kWh/kW/Jahr  1,31 
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Day-Ahead Markt Käufe kWh/kW/Jahr 214,1 164,83 

Day-Ahead Markt Verkäufe kWh/kW/Jahr 0 0 

Intraday Markt Käufe kWh/kW/Jahr  42,4 

Intraday Markt Verkäufe kWh/kW/Jahr  25,99 

Gesamtverbrauch kWh/kW/Jahr 214,1 223,5 

Differenz des Gesamtverbrauchs 

im Vergleich zum Referenzszena-

rio 

kWh/kW/Jahr  9,4 

Tabelle 32: Case Study E-Mobility-Pool - Use Case 2 – Zeitraum 2 - Paramtervariation 

KPI Einheit 

Referenzszena-

rio mit Parame-

tervariation 

Sekundärregel-, Day-

Ahead-und Intraday-

Markt mit Parametervari-

ation 

Negative Regelenergie EUR/kW/Jahr  -0,14 

Positive Regelenergie EUR/kW/Jahr  -0,04 

Day-Ahead Markt Käufe EUR/kW/Jahr 3,62 2,6 

Day-Ahead Markt Ver-

käufe 
EUR/kW/Jahr 0 0 

Intraday Markt Käufe EUR/kW/Jahr  0,67 

Intraday Markt Verkäufe EUR/kW/Jahr  -0,35 

Netzkosten und Abgaben EUR/kW/Jahr 9,87 8,94 

Gesamtkosten EUR/kW/Jahr 13,49 11,68 

Differenz der Gesamtkos-

ten im Vergleich zum Re-

ferenzszenario 

EUR/kW/Jahr  -1,81 

Negative Regelenergie kWh/kW/Jahr  16,65 

Positive Regelenergie kWh/kW/Jahr  0,53 

Day-Ahead Markt Käufe kWh/kW/Jahr 84,39 65,13 

Day-Ahead Markt Ver-

käufe 
kWh/kW/Jahr 0 0 

Intraday Markt Käufe kWh/kW/Jahr  16,6 
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Intraday Markt Verkäufe kWh/kW/Jahr  10,03 

Gesamtverbrauch kWh/kW/Jahr 84,39 87,83 

Differenz des Gesamtver-

brauchs im Vergleich zum 

Referenzszenario 

kWh/kW/Jahr  3,43 

Tabelle 33: Case Study E-Mobility-Pool - Use Case 3 – Zeitraum 1 

KPI Einheit 
Referenz-

szenario 

Tertiärregel-, Day-

Ahead-und Intraday-

Markt 

Negative Regelenergie EUR/kW/Jahr  -0,03 

Positive Regelenergie EUR/kW/Jahr  0 

Day-Ahead Markt Käufe EUR/kW/Jahr 7,92 7,12 

Day-Ahead Markt Verkäufe EUR/kW/Jahr 0 0 

Intraday Markt Käufe EUR/kW/Jahr  0 

Intraday Markt Verkäufe EUR/kW/Jahr  0 

Netzkosten und Abgaben EUR/kW/Jahr 24,74 24,97 

Gesamtkosten EUR/kW/Jahr 32,66 32,05 

Differenz der Gesamtkosten im 

Vergleich zum Referenzszenario 
EUR/kW/Jahr  -0,6 

Negative Regelenergie kWh/kW/Jahr  0 

Positive Regelenergie kWh/kW/Jahr  0 

Day-Ahead Markt Käufe kWh/kW/Jahr 210,42 213,84 

Day-Ahead Markt Verkäufe kWh/kW/Jahr 0 0 

Intraday Markt Käufe kWh/kW/Jahr  0 

Intraday Markt Verkäufe kWh/kW/Jahr  0 

Gesamtverbrauch kWh/kW/Jahr 210,42 213,84 

Differenz des Gesamtverbrauchs 

im Vergleich zum Referenzszena-

rio 

kWh/kW/Jahr  3,41 

Tabelle 34: Case Study E-Mobility-Pool - Use Case 3 – Zeitraum 1 - Parametervariation 
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KPI Einheit 

Referenzszena-

rio mit Parame-

tervariation 

Tertiärregel-, Day-Ahead-

und Intraday-Markt mit 

Parametervariation 

Negative Regelenergie EUR/kW/Jahr  -0,01 

Positive Regelenergie EUR/kW/Jahr  0 

Day-Ahead Markt Käufe EUR/kW/Jahr 3,16 2,76 

Day-Ahead Markt Ver-

käufe 
EUR/kW/Jahr 0 0 

Intraday Markt Käufe EUR/kW/Jahr  0 

Intraday Markt Verkäufe EUR/kW/Jahr  0 

Netzkosten und Abgaben EUR/kW/Jahr 9,78 9,88 

Gesamtkosten EUR/kW/Jahr 12,94 12,62 

Differenz der Gesamtkos-

ten im Vergleich zum Re-

ferenzszenario 

EUR/kW/Jahr  -0,32 

Negative Regelenergie kWh/kW/Jahr  0 

Positive Regelenergie kWh/kW/Jahr  0 

Day-Ahead Markt Käufe kWh/kW/Jahr 82,99 84,47 

Day-Ahead Markt Ver-

käufe 
kWh/kW/Jahr 0 0 

Intraday Markt Käufe kWh/kW/Jahr  0 

Intraday Markt Verkäufe kWh/kW/Jahr  0 

Gesamtverbrauch kWh/kW/Jahr 82,99 84,47 

Differenz des Gesamtver-

brauchs im Vergleich zum 

Referenzszenario 

kWh/kW/Jahr  1,47 

Tabelle 35: Case Study E-Mobility-Pool - Use Case 3 – Zeitraum 2 

KPI Einheit 
Referenz-

szenario 

Tertiärregel-, Day-

Ahead-und Intraday-

Markt 

Negative Regelenergie EUR/kW/Jahr  -0,01 



Deliverable Nr. D.9 | Beschreibung der Algorithmen und Bewertung der Skalierbarkeit 185 

Positive Regelenergie EUR/kW/Jahr  0 

Day-Ahead Markt Käufe EUR/kW/Jahr 9,09 8,12 

Day-Ahead Markt Verkäufe EUR/kW/Jahr 0 0 

Intraday Markt Käufe EUR/kW/Jahr  0 

Intraday Markt Verkäufe EUR/kW/Jahr  0 

Netzkosten und Abgaben EUR/kW/Jahr 24,98 25,25 

Gesamtkosten EUR/kW/Jahr 34,08 33,36 

Differenz der Gesamtkosten im 

Vergleich zum Referenzszenario 
EUR/kW/Jahr  -0,71 

Negative Regelenergie kWh/kW/Jahr  0,01 

Positive Regelenergie kWh/kW/Jahr  0 

Day-Ahead Markt Käufe kWh/kW/Jahr 214,1 218,13 

Day-Ahead Markt Verkäufe kWh/kW/Jahr 0 0 

Intraday Markt Käufe kWh/kW/Jahr  0 

Intraday Markt Verkäufe kWh/kW/Jahr  0,01 

Gesamtverbrauch kWh/kW/Jahr 214,1 218,13 

Differenz des Gesamtverbrauchs 

im Vergleich zum Referenzszena-

rio 

kWh/kW/Jahr  4,03 

Tabelle 36: Case Study E-Mobility-Pool - Use Case 3 – Zeitraum 2 - Parametervariation 

KPI Einheit 

Referenzszena-

rio mit Parame-

tervariation 

Tertiärregel-, Day-Ahead-

und Intraday-Markt mit 

Parametervariation 

Negative Regelenergie EUR/kW/Jahr  0 

Positive Regelenergie EUR/kW/Jahr  0 

Day-Ahead Markt Käufe EUR/kW/Jahr 3,62 3,14 

Day-Ahead Markt Ver-

käufe 
EUR/kW/Jahr 0 0 

Intraday Markt Käufe EUR/kW/Jahr  0 

Intraday Markt Verkäufe EUR/kW/Jahr  0 



Deliverable Nr. D.9 | Beschreibung der Algorithmen und Bewertung der Skalierbarkeit 186 

Netzkosten und Abgaben EUR/kW/Jahr 9,87 10 

Gesamtkosten EUR/kW/Jahr 13,49 13,15 

Differenz der Gesamtkos-

ten im Vergleich zum Re-

ferenzszenario 

EUR/kW/Jahr  -0,35 

Negative Regelenergie kWh/kW/Jahr  0 

Positive Regelenergie kWh/kW/Jahr  0 

Day-Ahead Markt Käufe kWh/kW/Jahr 84,39 86,33 

Day-Ahead Markt Ver-

käufe 
kWh/kW/Jahr 0 0 

Intraday Markt Käufe kWh/kW/Jahr  0 

Intraday Markt Verkäufe kWh/kW/Jahr  0 

Gesamtverbrauch kWh/kW/Jahr 84,39 86,33 

Differenz des Gesamtver-

brauchs im Vergleich zum 

Referenzszenario 

kWh/kW/Jahr  1,94 

Tabelle 37: Case Study E-Mobility-Pool - Day-Ahead-Szenario– Zeitraum 3 

KPI Einheit 
Referenz-

szenario 

Day-Ahead-

Szenario 

Day-Ahead Markt Käufe EUR/kW 0,54 0,52 

Day-Ahead Markt Verkäufe EUR/kW 0 0 

Netzkosten und Abgaben EUR/kW 0,88 0,89 

Gesamtkosten EUR/kW 1,42 1,41 

Differenz der Gesamtkosten im Vergleich 

zum Referenzszenario 
EUR/kW  0,01 

Day-Ahead Markt Käufe kWh/kW 12,81 12,95 

Day-Ahead Markt Verkäufe kWh/kW 0 0 

Gesamtverbrauch kWh/kW 12,81 12,95 

Differenz des Gesamtverbrauchs im Ver-

gleich zum Referenzszenario 
kWh/kW  0,14 
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Tabelle 38: Case Study E-Mobility-Pool - Day-Ahead-Szenario– Zeitraum 3 - Parameter-

variation 

KPI Einheit 

Referenzszenario 

mit Parametervari-

ation 

Day-Ahead-

Szenario mit Pa-

rametervariation 

Day-Ahead Markt Käufe EUR/kW 0.27 0.26 

Day-Ahead Markt Verkäufe EUR/kW 0 0 

Netzkosten und Abgaben EUR/kW 0,44 0,44 

Gesamtkosten EUR/kW 0,71 0,70 

Differenz der Gesamtkosten im 

Vergleich zum Referenzszenario 
EUR/kW  0,01 

Day-Ahead Markt Käufe kWh/kW 6,42 6,49 

Day-Ahead Markt Verkäufe kWh/kW 0 0 

Gesamtverbrauch kWh/kW 6,42 6,49 

Differenz des Gesamtverbrauchs 

im Vergleich zum Referenzszena-

rio 

kWh/kW  0,07 

Tabelle 39: Case Study E-Mobility-Pool - Use Case 4– Zeitraum 3 

KPI Einheit 
Referenz-

szenario 

Day-Ahead-und In-

traday-Markt 

Day-Ahead Markt Käufe EUR/kW 0,54 0,52 

Day-Ahead Markt Verkäufe EUR/kW 0 0 

Intraday Markt Käufe EUR/kW  0,005 

Intraday Markt Verkäufe EUR/kW  -0,008 

Netzkosten und Abgaben EUR/kW 0,88 0,89 

Gesamtkosten EUR/kW 1,42 1,41 

Differenz der Gesamtkosten im Vergleich 

zum Referenzszenario 
EUR/kW  0,01 

Day-Ahead Markt Käufe kWh/kW 12,81 12,91 

Day-Ahead Markt Verkäufe kWh/kW 0 0 

Intraday Markt Käufe kWh/kW  0,14 
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Intraday Markt Verkäufe kWh/kW  0,09 

Gesamtverbrauch kWh/kW 12,81 12,96 

Differenz des Gesamtverbrauchs im Ver-

gleich zum Referenzszenario 
kWh/kW  0,15 

Tabelle 40: Case Study E-Mobility-Pool - Use Case 4– Zeitraum 3 - Parametervariation 

KPI Einheit 

Referenzszenario 

mit Parameterva-

riation 

Day-Ahead-und 

Intraday-Markt 

mit Parameter-

variation 

Day-Ahead Markt Käufe EUR/kW 0,27 0,26 

Day-Ahead Markt Verkäufe EUR/kW 0 0 

Intraday Markt Käufe EUR/kW  0,003 

Intraday Markt Verkäufe EUR/kW  
-0,005 

 

Netzkosten und Abgaben EUR/kW 0,4 0,44 

Gesamtkosten EUR/kW 0,71 0,7 

Differenz der Gesamtkosten im 

Vergleich zum Referenzszenario 
EUR/kW  0,01 

Day-Ahead Markt Käufe kWh/kW 6,42 6,46 

Day-Ahead Markt Verkäufe kWh/kW 0 0 

Intraday Markt Käufe kWh/kW  0,08 

Intraday Markt Verkäufe kWh/kW  0,05 

Gesamtverbrauch kWh/kW 6,42 6,49 

Differenz des Gesamtverbrauchs im 

Vergleich zum Referenzszenario 
kWh/kW  0,07 

 

13.4 Wärmepumpenpool 

13.4.1 DA 

Zeitraum 1 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie EUR/kW 0 0 
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Positive Regelenergie EUR/kW 0 0 

Day-Ahead Markt 
Käufe 

EUR/kW 63.04 55.66 

Intraday Markt Käufe EUR/kW 0 0 

Intraday Markt Ver-
käufe 

EUR/kW 0 0 

Netzkosten und Abga-
ben 

EUR/Jahr 226.81 229.39 

Gesamtkosten EUR/kW 289.86 285.04 

Gesamtersparnisse im 

Vergleich zum Refe-
renzszenario 

EUR/kW 4.82  

 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie kWh/kW 0 0 

Positive Regelenergie kWh/kW 0 0 

Day-Ahead Markt 
Käufe 

kWh/kW 
1699.46 

1718.76 

Intraday Markt Käufe kWh/kW 0 0 

Intraday Markt Ver-
käufe 

kWh/kW 
0 0 

Gesamtverbrauch kWh/kW 
1699.46 1718.76 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
19.3 

 

Zeitraum 2 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie EUR/kW 0 0 

Positive Regelenergie EUR/kW 0 0 

Day-Ahead Markt 
Käufe 

EUR/kW 100.76 85.57 

Intraday Markt Käufe EUR/kW 0 0 

Intraday Markt Ver-
käufe 

EUR/kW 0 0 

Netzkosten und Abga-

ben 
EUR/Jahr 245.8 245.89 

Gesamtkosten EUR/kW 346.56 331.46 
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Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 15.09  

 

KPI Einheit Referenzszenario Day-Ahead- Markt 

Negative Regelenergie kWh/kW 0 0 

Positive Regelenergie kWh/kW 0 0 

Day-Ahead Markt 
Käufe 

kWh/kW 1841.76 
1842.42 

Intraday Markt Käufe kWh/kW 0 0 

Intraday Markt Ver-
käufe 

kWh/kW 0 
0 

Gesamtverbrauch kWh/kW 1841.76 1842.42 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
0.67 

 

 

13.4.2 SRL+DA+ID 

Zeitraum 1 

 

KPI Einheit Referenzszenario 
Sekundärregel-, Day-Ahead-
und Intraday-Markt 

Negative Regelenergie EUR/kW 0 3.16 

Positive Regelenergie EUR/kW 0 0 

Day-Ahead Markt 

Käufe 
EUR/kW 63.04 41.98 

Intraday Markt Käufe EUR/kW 0 16 

Intraday Markt Ver-
käufe 

EUR/kW 0 0.01 

Netzkosten und Abga-
ben 

EUR/kW 226.81 199.79 

Gesamtkosten EUR/kW 289.86 255.2 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 34.65  
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KPI Einheit Referenzszenario 
Sekundärregel-, Day-Ahead-
und Intraday-Markt 

Negative Regelenergie kWh/ kW 0 1709.19 

Positive Regelenergie kWh/ kW 0 
0 

Day-Ahead Markt 
Käufe 

kWh/kW 
1699.46 

1245.36 

Intraday Markt Käufe kWh/kW 0 503.41 

Intraday Markt Ver-
käufe 

kWh/kW 
0 

0 

Gesamtverbrauch kWh/kW 
1699.46 1748.77 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
19.3 

 

Zeitraum 2 

KPI Einheit Referenzszenario 
Sekundärregel-, Day-Ahead-
und Intraday-Markt 

Negative Regelenergie EUR/kW 0 13.25 

Positive Regelenergie EUR/kW 0 0 

Day-Ahead Markt 

Käufe 
EUR/kW 100.76 72.33 

Intraday Markt Käufe EUR/kW 0 17.06 

Intraday Markt Ver-

käufe 
EUR/kW 0 5.82 

Netzkosten und Abga-
ben 

EUR/kW 245.8 214.11 

Gesamtkosten EUR/kW 346.56 284.44 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 62.12  

 

KPI Einheit Referenzszenario 
Sekundärregel-, Day-Ahead-
und Intraday-Markt 

Negative Regelenergie 
angeboten 

kWh/ kW 
0 

1924.26 

Positive Regelenergie 

angeboten 

kWh/ kW 
0 

0 

Negative Regelenergie 
abgerufen 

kWh/ kW 
0 

0 
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Positive Regelenergie 
abgerufen 

kWh/ kW 
0 

0 

Day-Ahead Markt 

Käufe 
kWh/kW 1841.76 1498.88 

Intraday Markt Käufe kWh/kW 0 301.09 

Intraday Markt Ver-
käufe 

kWh/kW 0 196.85 

Gesamtverbrauch kWh/kW 1841.76 1879.3 

Gesamtverbrauch im 
Vergleich zum Refe-

renzszenario 

kWh/kW 
37.54 

 

 

 

13.4.3  TRL +DA+ID 

Zeitraum 1 

KPI Einheit Referenzszenario 
Tertiärregel -, Day-Ahead-und 
Intraday-Markt 

Negative Regelenergie EUR/kW 0 0.43 

Positive Regelenergie EUR/kW 0 0.42 

Day-Ahead Markt 
Käufe 

EUR/kW 63.04 55.74 

Intraday Markt Käufe EUR/kW 0 0.11 

Intraday Markt Ver-
käufe 

EUR/kW 0 0.01 

Netzkosten und Abga-
ben 

EUR/kW 226.81 229.43 

Gesamtkosten EUR/kW 289.86 284.41 

Gesamtersparnisse im 
Vergleich zum Refe-

renzszenario 

EUR/kW 5.45  

 

KPI Einheit Referenzszenario 
Tertiärregel -, Day-Ahead-und 

Intraday-Markt 

Negative Regelenergie kWh/ kW 0 315.41 

Positive Regelenergie kWh/ kW 0 
341.39 

Day-Ahead Markt 
Käufe 

kWh/kW 
1699.46 

1719.43 
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Intraday Markt Käufe kWh/kW 0 2.37 

Intraday Markt Ver-
käufe 

kWh/kW 
0 

1.13 

Gesamtverbrauch kWh/kW 
1699.46 1719.43 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 
19.88 

 

 

 Zeitraum 2 

KPI Einheit Referenzszenario 
Tertiärregel -, Day-Ahead-und 

Intraday-Markt 

Negative Regelenergie EUR/kW 0 0.28 

Positive Regelenergie EUR/kW 0 0.33 

Day-Ahead Markt 
Käufe 

EUR/kW 100.76 85.62 

Intraday Markt Käufe EUR/kW 0 0.48 

Intraday Markt Ver-
käufe 

EUR/kW 0 0.15 

Netzkosten und Abga-

ben 
EUR/kW 245.8 245.81 

Gesamtkosten EUR/kW 346.56 331.05 

Gesamtersparnisse im 

Vergleich zum Refe-
renzszenario 

EUR/kW 15.51  

 

KPI Einheit Referenzszenario 
Tertiärregel -, Day-Ahead-und 
Intraday-Markt 

Negative Regelenergie kWh/kW 0 267.87 

Positive Regelenergie kWh/kW 0 275.3 

Day-Ahead Markt 
Käufe 

kWh/kW 1841.76 1842.23 

Intraday Markt Käufe kWh/kW 0 7.5 

Intraday Markt Ver-
käufe 

kWh/kW 0 3.42 

Gesamtverbrauch kWh/kW 1841.76 1841.95 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 0.19  
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13.4.4 CO2 

 Zeitraum 2 

KPI Einheit Referenzszenario CO2 

Negative Regelenergie EUR/kW 0 0 

Positive Regelenergie EUR/kW 0 0 

Day-Ahead Markt 

Käufe 
EUR/kW 100.76 89.4 

Intraday Markt Käufe EUR/kW 0 0 

Intraday Markt Ver-
käufe 

EUR/kW 0 0 

Netzkosten und Abga-
ben 

EUR/kW 245.8 249.13 

Gesamtkosten EUR/kW 346.56 338.53 

Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 8.03  

 

KPI Einheit Referenzszenario CO2 

Negative Regelenergie kWh/kW 0 0 

Positive Regelenergie kWh/kW 0 0 

Day-Ahead Markt 
Käufe 

kWh/kW 1841.76 1866.69 

Intraday Markt Käufe kWh/kW 0 0 

Intraday Markt Ver-
käufe 

kWh/kW 0 0 

Gesamtverbrauch kWh/kW 1841.76 1866.69 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 24.93  

 

13.4.5 DA+ID 

 

KPI Einheit Referenzszenario 
Day-Ahead-und Intraday-
Markt 
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Day-Ahead Markt 
Käufe 

EUR/kW 4.6 4.33 

Intraday Markt Käufe EUR/kW 0 1.95 

Intraday Markt Ver-
käufe 

EUR/kW 0 2.67 

Netzkosten und Abga-
ben 

EUR/kW 7.53 7.72 

Gesamtkosten EUR/kW 12.13 11.33 

Gesamtersparnisse im 
Vergleich zum Refe-

renzszenario 

EUR/kW 0.8  

 

KPI Einheit Referenzszenario 
Day-Ahead-und Intraday-
Markt 

Day-Ahead Markt 
Käufe 

kWh/kW 112.82 113.51 

Intraday Markt Käufe kWh/kW 0 294.6 

Intraday Markt Ver-
käufe 

kWh/kW 0 292.4 

Gesamtverbrauch kWh/kW 112.82 115.71 

Gesamtverbrauch im 
Vergleich zum Refe-

renzszenario 

kWh/kW 2.89  

 

13.4.6 CO2 Vergleich  

KPI Einheit Referenzszenario CO2 

Negative Regelenergie EUR/kW 0 0 

Positive Regelenergie EUR/kW 0 0 

Day-Ahead Markt 
Käufe 

EUR/kW 100.76 89.4 

Intraday Markt Käufe EUR/kW 0 0 

Intraday Markt Ver-
käufe 

EUR/kW 0 0 

Netzkosten und Abga-
ben 

EUR/kW 245.80 249.13 

Gesamtkosten EUR/kW 346.56 338.53 
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Gesamtersparnisse im 
Vergleich zum Refe-
renzszenario 

EUR/kW 8.03  

 

KPI Einheit Referenzszenario CO2 

Negative Regelenergie kWh/kW 0 0 

Positive Regelenergie kWh/kW 0 0 

Day-Ahead Markt 
Käufe 

kWh/kW 1841.76 1866.69 

Intraday Markt Käufe kWh/kW 0 0 

Intraday Markt Ver-
käufe 

kWh/kW 0 0 

Gesamtverbrauch kWh/kW 1841.76 1866.69 

Gesamtverbrauch im 
Vergleich zum Refe-
renzszenario 

kWh/kW 24.93  

 

KPI Einheit Referenzszenario CO2 

Negative Regelenergie kg/kW 0 0 

Positive Regelenergie kg/kW 0 0 

Day-Ahead Markt 
Käufe 

kg/kW 298.84 256.63 

Intraday Markt Käufe kg/kW 0 0 

Intraday Markt Ver-
käufe 

kg/kW 0 0 

Gesamtverbrauch kg/kW 298.84 256.63 

Gesamtverbrauch im 
Vergleich zum Refe-

renzszenario 

kg/kW 42.21  
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