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ZUSAMMENFASSUNG 

 

In den letzten Jahren wird die Relevanz von flexiblen Prosumern in Energiemärkten auf 

europäischer Ebene untersucht. Die aktive Beteiligung mehrerer fernsteuerbarer Prosu-

mer-Komponenten wie Wärmepumpen, Speichersysteme, Boiler, Photovoltaik und E-Mo-

bilität ermöglicht den einzelnen Prosumern unterschiedliche systemdienliche Dienstleistun-

gen zu erbringen. Im Flex+ Projekt werden dazu skalierbare Optimierungsalgorithmen ent-

wickelt, die unter Berücksichtigung der wirtschaftlichen und nicht-wirtschaftlichen Interes-

sen aller Teilnehmer eine optimale Nutzung und Vermarktung der vorhandenen Flexibilität 

ermöglichen. 

Damit die vorhandene Flexibilität jedoch optimal genutzt werden kann, ist es notwendig, 

dass wir die Merkmale und Faktoren, die sie beeinflussen, über einen kurzen Zeithorizont 

(ein oder zwei Tage im Voraus) genau vorhersagen. Zu diesem Zweck werden in diesem 

Dokument Prognosemodelle erarbeitet, mit denen die Entwicklung mehrerer wichtiger 

Merkmale, die sich direkt auf die verfügbare Flexibilität auswirken, vorhergesagt werden 

kann. Insbesondere beschreiben wir ausführlich die Parameter, die prognostiziert werden 

müssen, und die für die Gesamtoptimierungsleistung entscheidend sind. Darüber hinaus 

stellen wir eine detaillierte Beschreibung der Methoden zur Ableitung dieser Prognosen 

sowie deren Leistungsvermögen zur Verfügung. 
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1 Einführung 

Eines der Hauptziele des Flex+-Projekts ist die Entwicklung genauer Prognosemodelle zur 

Erzeugung von Vorhersagen über jene Parameter, die für den Betrieb der Komponenten 

(Batteriespeicher, Wärmepumpen, Boiler und Elektroautos) entscheidend sind. Solche Vor-

hersagemodelle werden direkt bei der Ableitung der Optimierungsstrategien für das Flexi-

bilitätsangebot in den Strommärkten verwendet. Daher kann die Vorhersagegenauigkeit 

der abgeleiteten Modelle die Leistung der Optimierung erheblich beeinflussen. 

In diesem Ergebnisdokument beschreiben wir detailliert die Parameter, die prognostiziert 

werden müssen, um die Flexibilitätspotenziale für jeden Use-Case und für jede Technologie 

(Batteriespeicher, Wärmepumpen, Boiler und Elektroautos). Diese Prognosen werden dann 

direkt in die Optimierung zur Berechnung der optimalen Flexibilitätsangebot in den Strom-

märkten einbezogen. Da die Berechnung des Flexibilitätspotenzials direkt von der Model-

lierung jeder in der Optimierung verwendeten Technologie abhängt (die detailliert in De-

liverable D9 dargestellt wird), stellen wir hier nur die Prognosen der wichtigen Parameter 

für jede Technologie dar und nicht direkt die Prognose des gesamten Flexibilitätspotenzials. 

Darüber hinaus geben wir eine detaillierte Beschreibung der Methoden zur Ableitung dieser 

Prognosen sowie deren Leistungsvermögen. Im weiteren Verlauf des Dokuments werden 

in Kapitel 2 die externen Prognosen zusammengefasst, die außerhalb des Betriebs der 

Komponenten liegen aber indirekt die Optimierung der Flexibilität beeinflussen. In den Ka-

piteln 3, 4 und 0 beschreiben wir die Prognosemethodik für die Nutzung des Elektroautos, 

den unflexiblen Teil der Lasten und die Warmwassernutzung. 
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2 Externe Prognosen 

2.1 Solareinstrahlung und PV-Erzeugung 

Die Solaren Einstrahlungsprognosen und die PV-Erzeugungsprognosen werden von den 

Projektpartnern (Fronius, IDM, etc.) durch Drittanbieter bezogen. Die Prognosen basieren 

auf PV Modellen, welche die Nennleistung der Anlage, sowie Modulausrichtung und Auf-

stellwinkel berücksichtigen. Für ein PV-System können maximal zwei unterschiedliche Aus-

richtungen angegeben werden. Der PV-Forecast kombiniert die beiden Ausrichtungen dann 

zu einer Gesamtleistung für ein PV-System. 

Für die prognostizierten Leistungswerte sind je nach Prognosehorizont unterschiedliche 

Granularitäten in Watt verfügbar: 

• 0-24 Stunden: 15 Minuten Werte 

• 24-48 Stunden: 1 Stunden Werte 

• 48-216 Stunden: 6 Stunden Werte 

2.2 Strom- und Regelenergiepreise 

Im Rahmen von dem Projekt wurden die langfristigen Preistrends analysiert, wie in De-

liverable 5 (Corinaldesi, et al., 2019) beschrieben. Die kurzfristigen Prognosen werden 

durch die Lieferanten und den Regelenergieanbieter bereitgestellt. Es werden die folgenden 

Preiseprognosen für die Simulationen bzw. in weiterer Folge für die Demonstrationen ver-

wendet:  

• Der stündliche Day-ahead Spotpreis der EPEX Spot wird von allen 

Stromlieferanten für die nächsten 72h vorhergesagt. Die Prognose 

wird von einem externen Dienstleister bezogen und an die flex+ Platt-

form weitergeleitet. Wichtige Eingangsparameter für die Prognose 

sind die Preise für Kohle, Gas und Öl sowie die Kosten für CO2 Zerti-

fikate. Eine weitere wichtige Rolle spielt die zu erwartende Einspei-

sung aus erneuerbaren Energien wie Wind und PV. Für die Ermittlung 

der Stromnachfrage werden neben der Temperatur auch die Typtag-

Profile und spezifische Kalenderinformationen genutzt. 

• Regelleistung und Regelenergie, Abrufwahrscheinlichkeiten: Die Re-

gelleistungs- und Regelenergiepreise sowie die Abrufwahrscheinlich-

keiten werden basierend auf den historischen Daten der letzten Wo-

chen sowohl für eine untere als auch die obere Position auf der Merit 

Order abgeschätzt. Dabei ist bei der unteren Position auf der Merit 

Order der Preis für die Regelenergie geringer, dafür ist die Abrufwahr-

scheinlichkeit höher, während sich an den oberen Positionen die nied-

rigen Abrufwahrscheinlichkeiten mit hohen Preisen befinden Der op-

timierte Fahrplan kann Angebote für diese zwei Positionen miteinbe-

ziehen.  

• Durchschnittlicher Intraday-Preis „ID3“: Intraday wird, im Gegensatz 

zu den Day-ahead Spot Preisen, pay-as-bid gehandelt, das heißt, 

dass jeder den Preis bekommt, den er angeboten hat. Dementspre-

chend können abhängig vom Zeitpunkt des Trades die Preise variie-

ren. Ein typischer Preis für die Bewertung von Intraday sind die ID3-

Preise, also der Durschnitt aller Angebote der letzten 3 Stunden. 

Diese Preise werden von den Energielieferanten für die nächsten 3 

Stunden abgeschätzt. 

• Rollierende Bid/Ask-Intraday-Preise: Außerdem werden die realen 

rollierenden, sich stündlich verändernden Ask- und Bid-Preise für den 

Intraday-Preis für jede Viertelstunde bzw. Stunde für die nächsten 
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drei Stunden bereitgestellt. Ab dann sind nur noch Prognosen verfüg-

bar, wobei die Intraday-Prognose dem Day-Ahead-Forecast ent-

spricht.  
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3 E-Car-Nutzung 

Mit der stetig wachsenden Marktdurchdringung von Elektrofahrzeugen und der damit ein-

hergehenden steigenden Nachfrage elektrischer Energie, gewinnen die Verbrauchsprogno-

sen von E-Autos-Ladevorgängen an Bedeutung. Die Auswirkung des Ladens von Elektro-

fahrzeugen auf das elektrische Netz wird nicht nur von der gesamten benötigten Energie 

und der maximalen erlaubten Leistung bestimmt, sondern auch von der Zeitspanne und 

vom geographischen Ort, wo die Ladevorgänge stattfinden. 

Elektrofahrzeuge erzeugen zu bestimmten Zeitpunkten an bestimmten geographischen 

Punkten des Netzes einen konzentrierten Leistungsbedarf. Um jederzeit eine hohe Anzahl 

von Ladevorgängen gewährleisten zu können, wäre heute ein bedeutender Ausbau des 

elektrischen Netzes notwendig (Pollok, Hille, & Schnettler, 2009). Zeitliche Prognosen von 

E-Autos-Ladevorgängen haben aus diesem Grund ein großes Potential den Ausbau des 

Stromnetzes und den damit verbundenen Investitionen zu reduzieren, denn sie würden ein 

effizienteres Management der Leistungsflüsse auf Verteilungsebene ermöglichen.  

Die traditionellen Verbrauchsprognosen von kleinen Verbrauchern basieren hauptsächlich 

auf dem Wetterfaktor (wie Temperatur und Luftfeuchtigkeit). Verbrauchsprognosen von E-

Autos-Ladevorgängen sind komplizierter, denn sie sind auch von Benutzeraktionen stark 

abhängig. 

Einige Studien analysieren das Ladeverhalten von Elektrofahrzeugen und die daraus resul-

tierenden Lastprofile unter Berücksichtigung der Unsicherheiten und stochastischen Eigen-

schaften. (Sokorai & A. Fleischhacker, 2018) entwickelt ein auf einer Markov-Chain basie-

rendes Tool, das die stochastische Natur der täglichen Nutzung einer Ladestation model-

lieren kann. Das Tool gibt als Ergebnis die Wahrscheinlichkeitsdichtefunktionen zum Laden 

von Elektrofahrzeugen an, die in Abbildung 1 dargestellt sind. 

 

 

Abbildung 1 Wahrscheinlichkeitsdichtefunktionen von Plug-In-Zeiten. 

 

Im Artikel (Zhuowei, 2011), wurde das Monte-Carlo-Simulationsverfahren angewendet, 

um die Startzeit des Ladevorganges basierend auf Wahrscheinlichkeitsverteilungen zu be-

stimmen. Diese Studie unterscheidet zwischen mehreren Verbrauchern: Elektrobussen, 

Taxis, Dienstwagen und Privatwagen. Wie in Abbildung 2 gezeigt, unterscheiden sich die 

Ladeverhalten von den Verbrauchern erheblich. 
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Abbildung 2 Ladezeiten der unterschiedlichen Verbraucher 

 

 

Studien, wie (Feixiang, 2011) untersuchen die Eigenschaften des Verbrauchverhalten an 

den Ladestationen durch stochastischen Modellen wie neuronalen Backpropagation-Netze. 

Durch diese Methode wurde eine Eigenschaft der Ladevorgänge festgestellt: Der Verbrauch 

am Prognosetag ist der Verbrauch am selben Tag der letzten Woche sehr ähnlich. Es wird 

hier gezeigt, dass unter Berücksichtigung weiterer Einflussfaktoren (wie Wetter und Tem-

peratur) der Prognosen Fehler dann erheblich verringert werden kann. 

Genaue und angemessene Lastprognosemethoden zur Beschreibung der Ladeverhalten 

von Elektrofahrzeugen stellen heutzutage eine wichtige Garantie für die Planung und den 

Betrieb des zukünftigen Versorgungssystems dar und werden unvermeidlich eine wichtige 

Rolle bei der Automatisierung des elektrischen Systems spielen. 
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4 Unflexible Stromlast 

4.1 Datenbeschreibung und –aufbereitung 

Messungen des unflexiblen Lastverbrauchs jedes Haushalts wurden mit einer Granularität 

von 15 Minuten gesammelt. Damit stehen uns an jedem Tag 96 sequentielle Messungen 

der unflexiblen Last aus jedem Haushalt zur Verfügung. Jede dieser Messungen zum Zeit-

punkt t stellt den Lastverbrauch während des letzten 15min-Intervalls dar, d.h. den Ener-

gieverbrauch innerhalb des letzten 15min-Intervalls. In der folgenden Abbildung 3 und 

Abbildung 4 stellen wir eine Stichprobe des gemessenen Lastverbrauchs von einem Haus-

halt innerhalb eines Monats bzw. eines Tages dar. 

 

Abbildung 3 Unflexibler Lastverbrauch eines Haushalts in einem Monat (von 01.10.2016 bis 
31.10.2016). 

 

Abbildung 4 Unflexibler Lastverbrauch eines Haushalts an einem Tag (22.10.2016). 
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Solche Messungen, die über den Zeitraum von einem Jahr oder mehr gesammelt werden, 

reichen in der Regel aus, um ein Prognosemodell zu erstellen. Ein solches Prognosemodell 

wird verwendet, um Prognosen der Last für den nächsten Kalendertag zu erstellen, die es 

uns dann ermöglichen, die Flexibilitätsnutzung zu optimieren. 

4.2 Methodik 

In diesem Unterabschnitt beschreiben wir im Detail die wichtigsten Methoden, die zur Vor-

hersage der unflexiblen Lasten verwendet werden. Unter unflexiblen Lasten verstehen wir 

alle elektrischen Lasten außer der Last der steuerbaren Komponenten (Wärmepumpe, Boi-

ler, Elektroauto). Unser Hauptaugenmerk liegt auf der Entwicklung von Prognosemetho-

den, die a) rechentechnisch effizient (ermöglicht eine Ad-hoc-Berechnung der Prognosen 

auch in Echtzeit) und b) zuverlässig in Bezug auf die abgeleiteten Prognosen sind. Zu die-

sem Zweck haben wir die folgenden wichtigsten Methoden untersucht: 

a) Persistenzmodelle 

b) Auto-Regressive (AR)-basierte Modelle 

c) Kombinationen von Persistenz und Auto-Regressive (AR)-basierten 

Modellen 

d) Feature-Extraktionsmodell 

e) Holt-Winters Modell 

f) SARIMA Modell 

Die erste Klasse von Modellen (Persistenzmodelle) verwendet das zuletzt beobachtete Ver-

halten über einen Zeitraum der letzten Tage. Einfach gesagt, Persistenzmodelle versuchen, 

das beobachtete Verhalten über mehrere (letzte) Tage zu erfassen. Die zweite Klasse von 

Modellen (Auto-Regressive-basierte Modelle) verwendet das zuletzt beobachtete Verhalten 

während des aktuellen Tages (der letzten Stunden), um eine Vorhersage für die nächsten 

Stunden zu erstellen. Kurz gesagt, Auto-Regressive-basierte Modelle erfassen zeitliche Ab-

hängigkeiten von zuvor beobachtetem Verhalten innerhalb eines Tages. Informell können 

wir sagen, dass Persistenzmodelle versuchen, niedrige Frequenzen in den Profilen der 

nicht-flexiblen Last zu erfassen, während Auto-Regressive-basierte Modelle versuchen, hö-

here Frequenzen in den Profilen der nicht-flexiblen Last zu erfassen. 

Eine wichtige Beobachtung bei der Untersuchung dieser Methoden ist, dass eine Kombina-

tion der beiden Methoden (a) und (b) genauere Vorhersagen über die unflexiblen Lasten 

liefern sollte. Wir möchten sowohl die nieder- als auch die hochfrequenten Phänomene 

erfassen, die auftreten können. Diese Notwendigkeit wird auch dadurch begründet, dass 

der große Zeithorizont der angeforderten Prognosen (in der Regel 1 Tag im Voraus) zu-

sätzliche Herausforderungen (z.B. seltene Ereignisse) mit sich bringt, die mit keiner der 

beiden Methoden allein erfasst werden können. Wir untersuchen die Kombination der bei-

den Modelle in der Modellkategorie (c). 

Diese Idee (der Kombination alternativer Modelle und Faktoren innerhalb eines einzigen 

Modells) wurde in der Modellkategorie (d) weiter genutzt; diese versucht, eine größere 

Anzahl von Merkmalen (d.h. eine größere Variation von nieder- und hochfrequenten Per-

sistenz Faktoren) zu integrieren und optimal unter ihnen auszuwählen. Schließlich stellen 

die letzten beiden Modellkategorien (e) und (f) zwei eher standardisierte Ansätze dar, näm-

lich die Holt-Winters und die SARIMA-Prognosemodelle. 

Unser Ziel ist es, einen Vergleich zwischen dieser großen Sammlung von Modellen durch-

zuführen und den Unterschied zwischen den Modellen (c) und (d) zu identifizieren, die 

speziell auf die Lastprognose zugeschnitten sind, im Vergleich zu generischen Black-Box-

Modellen, wie den Modellen (e) und (f). In den folgenden Unterabschnitten stellen wir die 

Details der oben genannten Methoden vor. 



Deliverable D7 | Beschreibung der Forecasts und Flexibilitätspotentiale für jeden Use Case und für jede Techno-
logie sowie unter Berücksichtigung der Eigeninteressen   14 

4.2.1 Persistenzmodelle (“copy-last-days”) 

Persistenz-Prognosemodelle werden in der Regel verwendet, um Referenzmodelle (Base-

line) zu erstellen, die dann für Vergleichstests verwendet werden können. In vielen Fällen 

ist es von Vorteil zu wissen, ob ein entwickeltes Prognosemodell bessere Vorhersagen lie-

fern kann als ein solches Referenz- oder Basismodell. Persistenzmodelle gehören zu den 

"trivialsten" und basieren auf dem Prinzip, dass "die Dinge gleich bleiben", d.h. die Prog-

nose ist immer gleich dem letzten bekannten Datenpunkt. 

Gemäß Referenz (Notton & Voyant, 2018) würde ein Persistenzmodell davon ausgehen, 

dass die (unflexible) Last zum Zeitpunkt 𝑡 + 1 gleich der Last zum Zeitpunkt t ist. Wie genau 

sollten jedoch die Zeitinstanzen 𝑡 + 1  und 𝑡 definiert sein? Bei der (unflexiblen) Lastprog-

nose müssen wir eine Lastprognose über 24 Stunden im Voraus (d.h. über den nächsten 

Tag) erstellen. Natürlich würde in diesem Zusammenhang ein Persistenzmodell, das davon 

ausgeht, dass die Last am nächsten Tag konstant bleibt und dem aktuellen entspricht, 

höchstwahrscheinlich die zeitlichen Schwankungen im Lastprofil nicht gut vorhersagen 

können. Stattdessen wäre ein Persistenzmodell genauer, wenn es davon ausgeht, dass die 

(unflexible) Last zur Zeit 𝑡 des Tages 𝑑 + 1 (kurz (𝑡, 𝑑 + 1)) gleich wie die Last zur gleichen 

Zeit t des Vortages oder des Vortages 𝑑 wäre. Eine zusätzliche Variation dieses Modells 

würde auch mehr als einen Vortag berücksichtigen (z.B. den durchschnittlichen Verbrauch 

zur gleichen Zeit an 𝑁 Vortagen). 

Zu diesem Zweck werden wir in der kommenden Evaluierung ein Persistenzmodell betrach-

ten, das 𝑁 letzte gleiche Wochentage verwendet. Wenn wir beispielsweise Prognosen für 

den nächsten Tag erstellen müssen, und dieser Tag ist ein Montag, dann entspricht diese 

Prognose dem durchschnittlichen Lastverbrauch der letzten 𝑁 Montage zur gleichen Zeit. 

Wir werden die Abkürzung CLD verwenden, die für "copy-last-days" steht, um auf diese 

Modelle zu verweisen. 

Formal gesehen bezeichnet 𝑙𝑑(𝑡) die (unflexible) Last eines Haushalts zum Zeitpunkt 𝑡 am 

Tag 𝑑. Dann geht das 1-Tages-Persistenzmodell davon aus, dass 

𝑙𝑑
𝑃𝑀(𝑡) = 𝑙𝑑−1(𝑡) 

Analog dazu können wir das N-Tages-Persistenzmodell wie folgt definieren: 

𝑙𝑑
𝑃𝑀(𝑡) =

1

𝑁
 ∑ 𝑙𝑖(𝑡)

𝑑−1

𝑖=𝑑−𝑁

 

Mit anderen Worten, das N-Tages-Persistenzmodell nimmt die durchschnittliche Last von 

𝑁 Vortagen zur gleichen Zeit. Da die Stromlast jedoch stark mit der Anwesenheit der Men-

schen in einem Haushalt (d.h. mit dem Tagesablauf der Menschen) korreliert, können wir 

das oben genannte N-Tages-Persistenzmodell weiter verbessern, indem wir nur die 𝑁 vor-

herigen gleichen Tage berücksichtigen. Wenn 𝑑 + 1 also einem "Montag" entspricht, dann 

müssen wir, um unsere Prognose für den Zeitpunkt 𝑡 zu erstellen, die durchschnittliche 

Last zur gleichen Zeit an den letzten 𝑁 vorhergehenden Montagen errechnen. Wir bezeich-

nen dieses Modell als das N-Gleiche-Tage-Persistenzmodell, nach dem die Prognosen wie 

folgt berechnet werden 

𝑙𝑑
𝑃𝑀(𝑡) =

1

𝑁
 ∑ 𝑙𝑖(𝑡)

𝑑−7

𝑖=𝑑−7𝑁

 

4.2.2 Auto-Regressive (AR)-basierte Modelle 

Wie wir im vorherigen Unterabschnitt gesehen haben, versuchen die diskutierten Persis-

tenzmodelle, zeitliche Abhängigkeiten zu erfassen, deren Häufigkeit sich über mehrere 

Tage oder Wochen erstreckt (z.B. aufgrund von Ähnlichkeiten im Tagesablauf der Bewoh-

ner an denselben Tagen). Wir werden solche Abhängigkeiten als niederfrequente zeitliche 

Abhängigkeiten bezeichnen. 
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Es kann aber auch zeitliche Abhängigkeiten der Stromlast innerhalb desselben Tages ge-

ben. Es ist demnach sehr wahrscheinlich, dass die zur Tageszeit 𝑡 gemessene Last von der 

zur vorherigen Zeitinstanz 𝑡 − 1 desselben Tages gemessenen Last abhängt, vor allem 

wenn das Zeitintervall zwischen diesen beiden Zeitinstanzen eher klein ist (hierbei gehen 

wir von Zeitintervallen von 15min aus). Wir werden solche zeitlichen Abhängigkeiten der 

unflexiblen Last als hochfrequente zeitliche Abhängigkeiten bezeichnen. 

Mit Hilfe von Auto-Regressive (AR) Prognosemodellen können solche (hochfrequenten) 

zeitlichen Abhängigkeiten der Last innerhalb eines Kalendertages erfasst werden. Das 

wahrscheinlich einfachste derartige Modell ist das Auto-Regressive Modell (kurz AR-

Modell), nach dem die Vorhersage der Last zum Zeitpunkt 𝑡 + 1 durch eine lineare Kombi-

nation der Last zu früheren Zeitpunkten gegeben ist. Es gilt also: 

𝑙𝑑
𝐴𝑅(𝑡) =  𝑎1𝑙𝑑(𝑡 − 1) + 𝑎2𝑙𝑑(𝑡 − 2) + ⋯ + 𝑎𝑛𝑙𝑑(𝑡 − 𝑛) 

(das sich aus einem Maximum-a-posteriori Prädiktor eines ursprünglichen Weißrausch-

Störprozesses ergibt, vgl. (Ljung, 1999), Kapitel 4).  

Falls wir Vorhersagen über mehrere Zeitinstanzen im Voraus (in der Regel einen Tag im 

Voraus) erstellen möchten, dann können wir eine Variation des obigen Modells implemen-

tieren, die in der Regel als Pseudo-Regressionsmodell bezeichnet wird und die folgende 

Form annimmt: 

𝑙𝑑
𝐴𝑅(𝑡|𝑎1, … , 𝑎𝑛) =  𝑎1𝑙𝑑

𝐴𝑅(𝑡 − 1) + 𝑎2𝑙𝑑
𝐴𝑅(𝑡 − 2) + ⋯ + 𝑎𝑛𝑙𝑑

𝐴𝑅(𝑡 − 𝑛) 

Mit anderen Worten, wenn die unflexible Last zum Zeitpunkt 𝑡 − 𝑗, 𝑗 = 1, … , 𝑛, nicht bekannt 

ist, wird sie durch die für diesen Zeitpunkt verfügbare Vorhersage ersetzt. 

Beachten Sie, dass alternative Auto-Regressive Modelle definiert werden können. Bei-

spielsweise werden häufig Modelle verwendet, die auch Moving-Average (MA) Rausch-

Terme enthalten. Solche Moving-Average Terme können verwendet werden, um die Aus-

wirkungen niederfrequenten Rauschens im Profil zu erfassen. Unsere Untersuchung zeigt 

jedoch, dass der Gewinn an Vorhersagegenauigkeit durch das Hinzufügen solcher Terme 

vernachlässigbar ist. 

Einer der Hauptnachteile solcher Methoden ist die Tatsache, dass sie eher für kurzfristige 

Zukunftsprognosen (im Bereich von wenigen Stunden) geeignet sind. Tatsächlich ist es 

einfach zu erkennen, dass sich selbst kleine Prognosefehler in den kurzfristigen Zukunfts-

prognosen unvorhersehbar ausbreiten können, wenn man langfristige Zukunftsprognosen 

formuliert, die sich über einen Tag im Voraus erstrecken. Aus diesem Grund stellen wir im 

nächsten Unterabschnitt eine Kombination aus dem im vorherigen Abschnitt beschriebenen 

N-Gleiche-Tage-Persistenzmodell und dem oben beschriebenen AR-basierten Modell vor. 

4.2.3 Kombinierte Auto-Regressive (AR)- und Persistenz-Modelle 

Wie bereits erwähnt können die Persistenzmodelle niederfrequente zeitliche Abhängigkei-

ten im Lastprofil (über mehrere Tage oder Wochen) erfassen, während Auto-Regressive-

Modelle dies für hochfrequente zeitliche Abhängigkeiten (innerhalb desselben Kalenderta-

ges) können. Darüber hinaus funktionieren Auto-Regressive-Modelle nur innerhalb eines 

kurzfristigen Zeithorizonts gut. Zu diesem Zweck möchten wir in diesem Unterabschnitt 

auch die Möglichkeit einer optimalen Kombination der beiden Modelltypen berücksichtigen. 

Im Prinzip passt diese Idee gut zu den in (Cesa-Bianchi & Lugosi, 2006) diskutierten ex-

pertenbasierten Prognosemethoden und Transfer-Lernmethoden wie (Grubinger , 

Chasparis, & Natschlaeger, 2017). 

Kurz gesagt setzt solch eine optimale Kombination der beiden Prognoseverfahren eine 

kombinierte Vorhersage der folgenden Form voraus: 

𝑙𝑑
𝐴𝑅(𝑡|𝑎1, … , 𝑎𝑛 , 𝑏0) =  𝑎1𝑙𝑑

𝐴𝑅(𝑡 − 1) + 𝑎2𝑙𝑑
𝐴𝑅(𝑡 − 2) + ⋯ + 𝑎𝑛𝑙𝑑

𝐴𝑅(𝑡 − 𝑛) + 𝑏0𝑙𝑑
𝑃𝑀(𝑡) 

In diesem Fall möchten wir eine neue Menge von Gewichten 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏0 berechnen, die 

die optimale Kombination aus den hochfrequenten zeitlichen Abhängigkeiten (erfasst durch 
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die auto-regressiven Terme) und den niederfrequenten zeitlichen oder saisonalen Abhän-

gigkeiten (erfasst durch den abschließenden Persistenzterm) finden. 

4.2.4 Training und Implementierung von Auto-Regressive (AR)-basierten Mo-

dellen 

In diesem Unterabschnitt möchten wir auf weitere Details zur Formulierung der erforderli-

chen unflexiblen Lastprognosen (für den nächsten Tag) sowie zum Trainieren dieser Mo-

delle eingehen. 

Nehmen wir an, wir haben den unflexiblen Lastverbrauch eines Haushalts über die Dauer 

von 𝑑 − 1 > 0 Tagen gemessen und Messungen in Intervallen von jeweils 15min gesammelt. 

Infolgedessen verfügen wir an jedem dieser Tage über 96 sequentielle Lastmessungen. 

Jede dieser Messungen zum Zeitpunkt 𝑡 stellt den Lastverbrauch während des letzten 

15min Intervalls dar. Anhand der verfügbaren Messungen über alle vorangegangenen 𝑑 −
1 Tage möchten wir den Lastverbrauch über den nächsten Tag 𝑑 vorhersagen. Schematisch 

ist dies in der folgenden Abbildung 5 dargestellt. 

 

Abbildung 5 Schematische Lastprognose unflexibler Verbraucher für den nächsten Tag. 

Im Falle des Persistenzmodells von Abschnitt 4.2.1 berechnen wir für jedes der 15min 

Intervalle des nächsten Tages einfach den Durchschnitt des Lastverbrauchs des gleichen 

Intervalls an den N gleichen Vortagen. 

Im Falle eines AR-basierten Modells müssen wir zunächst die optimalen Parameter (oder 

Gewichte) des Modells berechnen. Die optimale Berechnung dieser Gewichte wird als Re-

gressionsproblem der folgenden Form formuliert: 

min
𝑎1,𝑎2,…,𝑎𝑛

∑ 𝜆𝑇−𝑡|𝑙𝑑
𝐴𝑅(𝑡|𝑎1, … , 𝑎𝑛) − 𝑙𝑑(𝑡)|

2

𝑇=96(𝑑−1)

𝑡=1

 

Es minimiert den Vorhersagefehler über alle vorangegangenen Zeitintervalle. Der Parame-

ter 𝜆 entspricht einem Gewichtsfaktor, der den aktuellen Messungen mehr Gewicht verleiht 

(wodurch wir auch saisonale Abhängigkeiten des Lastverbrauchs erfassen können). In die-

ser Implementierung setzen wir ihn auf 𝜆 = 0.999. Aus berechnungstechnischen Gründen 

lösen wir das Problem der linearen Regression mit einer Recursive-Least-Squares (RLS) 

Implementierung (vgl. Abschnitt 12.3 von (Sayed, 2003)). 

4.2.5 Feature-Extraktionsmodell 

Eine der Schlussfolgerungen aus der Kombination der von uns in Abschnitt 4.2.3 beschrie-

benen Auto-Regressive und Persistenzmodelle ist die Tatsache, dass es in historischen Da-

ten (Vortage) Informationen gibt, welche die Prognosegenauigkeit signifikant erhöhen kön-

nen. Zu diesem Zweck beschreiben wir in diesem Abschnitt eine weitere Variante von Auto-

Regressive und Persistenzmodellen, die versuchen, diese historischen Merkmale besser zu 

verfolgen. Wir nennen dieses Modell Feature-Extraktionsmodell, da es mehrere historische 

Persistenzmerkmale kombiniert und versucht, ihre optimale relative Bedeutung zu finden. 

Wir formulieren dieses Prognosemodell als Regressionsproblem und versuchen, die relative 
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Bedeutung für die Lastprognose zu verstehen. Die Regressionsparameter werden nach dem 

in Abschnitt 4.2.4 vorgestellten Algorithmus der Recursive Least Squares trainiert. Die be-

trachteten Merkmalskategorien sind in der folgenden Tabelle 1 dargestellt. 

Tabelle 1 Feature-Kategorien im Feature-Extraktionsmodell 

RA Rollender Mittelwert der unflexiblen Last während des vorherigen 

Stundenfensters (vier 15-Minuten-Intervalle). 

d Werktag oder Wochenende, d  [0, 1] 

Lh Gesamtlast innerhalb des aktuellen Stundenintervalls. Das Stundenin-

tervall ist definiert als der Stundenzeitstempel des aktuellen 15min In-

tervalls. 

Ld Anteil der Last des aktuellen 15min Intervalls, im Vergleich zur mittle-

ren Last des Tages. 

DLh Differenz in der Last innerhalb der vorherigen Stunde. 

LC Erkennung von niedrigem Verbrauch, wenn Ld < 0.2. 

PC Erkennung von Spitzenverbrauch, wenn Ld > 1.5. 

Die genauen Merkmale, die als Regressoren verwendet werden, sind in der folgenden  

Tabelle 2 dargestellt. Beachten Sie, dass wir für alle Merkmalskategorien mit Ausnahme 

des Tagesindexes das entsprechende Merkmal vom Vortag und vom gleichen Tag in der 

Vorwoche verwenden. 

Tabelle 2 Merkmale, die im Feature-Extraktionsmodell als Regressoren betrachtet werden und zu-

geordnete Gewichte. 

Day LOAD RA d Lh Ld DLh LC PC 

Target 

X 

- - w4 - - - - - 

X-1 w0 w2 - w5 w7 w9 w11 w13 

X-7 w1 w3 - w6 w8 w10 w12 w14 

Wir erwarten, dass dieses Modell Abhängigkeiten erfasst, die auch im Persistenzmodell und 

in den Auto-Regressive Modellen vorhanden sind. Es versucht jedoch auch, den Gesamt-

verbrauch, der am Vortag/Woche aufgetreten ist, sowie das durchschnittliche Verhalten in 

der letzten Stunde zu verfolgen. In gewisser Weise können wir argumentieren, dass ein 

solches Modell reichhaltiger ist als die Kombination aus Auto-Regressive- und Persistenz-

modell, die in Abschnitt 4.2.3 vorgestellt wird. 

4.2.6 Holt-Winters Modell 

Das Holt-Winters Prognosemodell ist in der Prognoseliteratur gut bekannt, vgl. (Szmit, 

Szmit, Slawomir, & Bugala, 2012). Es zerlegt den vorhergesagten Parameter in drei Kom-

ponenten, nämlich eine Niveaukomponente, eine (hochfrequente) Trendkomponente und 

eine (niederfrequente) Saisonkomponente. Wir können argumentieren, dass es Elemente 

der in den vorangegangenen Abschnitten vorgestellten Modelle umfasst. So erfasst bei-

spielsweise die Trendkomponente zeitliche Abhängigkeiten, die auch in den Auto-Regres-

sive (AR)-basierten Modellen vorhanden sind, während die saisonale Komponente nieder-

frequente Abhängigkeiten erfasst, die auch in den Persistenzmodellen vorhanden sind. Die 
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Details zu diesem Modell finden Sie in der obigen Referenz sowie weiter hinten in Abschnitt 

5.2.3. Wir verwenden dieses Modell, um die Leistung der abgeleiteten Auto-Regressive und 

persistenzbasierten Prognosemodelle, die in den Abschnitten 4.2.3 und 4.2.5 entwickelt 

wurden, besser bewerten zu können. 

4.2.7 SARIMA Modell 

Das ARIMA-Modell (Auto Regressive Integrated Moving Average) ist eine der gängigsten 

Methoden zur Analyse und Prognose von Zeitreihen. Es handelt sich um eine Erweiterung 

der ARMA-Modelle für nicht-stationäre Zeitreihen, die stationär gemacht werden können, 

indem Unterschiede einer bestimmten Ordnung von der ursprünglichen Zeitreihe - inte-

grierte oder differenzstationäre Zeitreihen - übernommen werden. 

ARIMA verwendet Hauptparameter (𝑝, 𝑑, 𝑞), die als ganze Zahlen ausgedrückt werden. 

Diese drei Parameter berücksichtigen zusammen Saisonalität (Periodizität), Tendenz und 

Rauschen in den Datensätzen: 

• 𝑝 ist die auto-regressive Ordnung, die es ermöglicht, frühere Werte 

der Zeitreihe zu berücksichtigen. 

• 𝑑 ist die Reihenfolge der Integration, die es ermöglicht, frühere Un-

terschiede der Zeitreihe zu berücksichtigen, 

• 𝑞 ist die Reihenfolge des gleitenden Mittelwerts, die es ermöglicht, 

den Modellfehler als lineare Kombination von zuvor beobachteten 

Fehlerwerten einzustellen. 

Der Hauptnachteil dieses Modells ist, dass es keine saisonalen Zeitreihen unterstützt, was 

es unmöglich macht, damit Zeitreihen des Energieverbrauchs vorherzusagen, die durch 

starke Periodizität gekennzeichnet sind, wie z.B. Tages- oder Wochenzeiten. 

Eine Variation des ARIMA-Modells, nämlich SARIMA, kann stattdessen verwendet werden, 

um auch die Periodizität zu verfolgen. In diesem Modell sind die Parameter (𝑝, 𝑑, 𝑞) die 

nicht-saisonalen Parameter, die wie oben beschrieben gleich bleiben. Zusätzlich zu diesen 

Parametern stellen wir auch Parameter (𝑃, 𝐷, 𝑄) vor, die ähnlich wie (𝑝, 𝑑, 𝑞) definiert sind, 

aber stattdessen für die saisonale Komponente der Zeitreihe gelten. Schließlich beschreibt 

der Parameter 𝑆 den Zeitraum der Saison in der Zeitreihe (96, wenn die Periode einem Tag 

entspricht, 7x96, wenn die Periode einer Woche entspricht, etc., wobei 96 sich auf die 

Granularität der Sensordaten innerhalb eines Tages bezieht). Ähnlich wie das Holt-Winters-

Modell ist dies auch ein Black-Box-Modell, das auch die saisonalen Effekte erfasst und ver-

wendet wird, um die Leistung der abgeleiteten, Auto-Regressive Prognosemodelle besser 

zu bewerten. Weitere Informationen zu diesem Modell finden Sie auch im Abschnitt 5.2.4 

weiter unten. 

4.3 Ergebnisse 

In diesem Unterabschnitt stellen wir die Ergebnisse der betrachteten Prognosemethoden 

für die unflexiblen Lasten in Wohngebäuden vor. Insbesondere stellen wir die Leistungsfä-

higkeit des Persistenzmodells (Abschnitt 4.2.1), der Kombination aus Persistenzmodell und 

Auto-Regressive Modell (Abschnitt 4.2.3), des Feature-Extraktionsmodells (Abschnitt 

4.2.5), des Holt-Winters-Modells (Abschnitt 4.2.6) und des SARIMA-Modells (Abschnitt 

4.2.7) vor. Die Auswertung aller Modelle erfolgt in Bezug auf den Root-Mean-Square-Error 

(RMSE). 

4.3.1 Persistenzmodelle (“copy-last-days”) 

In diesem Abschnitt stellen wir die Prognoseperformance des Persistenz-Prognosemodells 

vor (kurz "Copy-last-days"), wobei wir die letzten N=3 gleichen Tage verwenden. In Ab-

bildung 6 und Abbildung 7 demonstrieren wir die One-Day-Ahead-Prognose des Persistenz-

modells und der tatsächlichen unflexiblen Last über die Dauer von einem Monat bzw. einem 

Tag. 
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Abbildung 6 Persistenzmodell ("Copy-last-days") mit N=3 letzten (gleichen) Tagen, die über einen 
Monat ausgewertet wurden (vom 01.10.2016 bis 31.10.2016). Der resultierende RMSE=189. Wir 

verwenden die Abkürzung CLD zur Bezeichnung des "copy-last-days"-Persistenzmodells. 

 

 

Abbildung 7 Persistenzmodell ("Copy-last-days") mit N=3, das über einen Tag (22.10.2016) aus-
gewertet wurde. Der resultierende RMSE=153. 
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4.3.2 Kombinationen von Persistenz (“copy-last-days”) und Auto-Regressive 

(AR)-basierten Modellen 

In diesem Abschnitt stellen wir die Vorhersageleistung des kombinierten auto-regressiven 

(AR) und Persistenzmodells ("copy-last-days") vor. Wie bereits beschrieben, versucht ein 

solches kombiniertes Modell die Persistenz im Lastprofil durch ähnliche Tage (Persistenz-

komponente) und zeitliche Effekte innerhalb desselben Tages (AR-Komponente) zu erfas-

sen. 

Die folgende Abbildung 8 zeigt die Reaktion dieses kombinierten Modells über den Zeitraum 

von einem Monat, während die Abbildung 9 die entsprechende Reaktion über den Zeitraum 

von einem Tag darstellt. 

 

 

Abbildung 8 Kombiniertes AR mit Persistenzmodell ("Copy-last-days") mit N=3 letzten (gleichen) 
Tagen, die über einen Monat ausgewertet wurden (vom 01.10.2016 bis 31.10.2016). Der resultie-
rende RMSE=159. 

 

 

Abbildung 9 Kombiniertes AR mit Persistenzmodell ("Copy-last-days") mit N=3 letzten (gleichen) 
Tagen, die über einen Tag (22.10.2016) ausgewertet wurden. Der resultierende RMSE=174. 
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Es ist offensichtlich (durch direkten Vergleich mit dem Persistenzmodell), dass die Leis-

tungsfähigkeit des kombinierten Modells über einen Monat jene des Persistenzmodells um 

etwa 15% übertroffen hat, was zeigt, dass zeitliche Abhängigkeiten innerhalb desselben 

Tages die Lastprognose signifikant beeinflussen. 

4.3.3 Holt-Winters Modell 

In diesem Abschnitt beschreiben wir die Leistung des in Abschnitt 4.2.6 kurz vorgestellten 

Holt-Winters-Prognosemodells. In der Auswertung haben wir die Periode entweder als 1 

Woche oder als 1 Tag definiert. Da diese saisonale Periodizität vorgegeben und benutzer-

definiert ist, ist diese Methode sehr empfindlich gegenüber dem für die Auswertung ver-

wendeten Datensatz (da die Periodizität im Verhalten der Bewohner zwischen den Haus-

halten stark variieren kann). 

Insbesondere in Abbildung 10 und Abbildung 11 stellen wir die Leistung dieses Modells 

über den Zeitraum von einem Monat bzw. einem Tag dar, bei einer saisonalen Komponente 

von 1 Woche. 

 

 

Abbildung 10 Holt-Winters Auswertung über einen Monat (vom 01.10.2016 bis 31.10.2016) für 
eine saisonale Komponente von 1 Woche. Der resultierende RMSE=288. 
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Abbildung 11 Holt-Winters Auswertung über einen Tag (22.10.2016) für eine saisonale Komponente 
von 1 Woche. Der resultierende RMSE=305. 

Außerdem stellen wir in Abbildung 12 und Abbildung 13 die Leistungsfähigkeit dieses Mo-

dells über den Zeitraum von einem Monat bzw. einem Tag bei einer Periodizität von 1 Tag 

dar. Insgesamt konnten wir eine Verbesserung der Leistung feststellen, wenn die saisonale 

Komponente auf der Grundlage eines Tages definiert wurde, was jedoch sehr spezifisch für 

den für diese Auswertung verwendeten Datensatz sein könnte. 

 

 

Abbildung 12 Holt-Winters Auswertung über einen Monat (vom 01.10.2016 bis 31.10.2016) und 
für eine saisonale Komponente von 1 Tag. Der resultierende RMSE=271. 
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Abbildung 13 Holt-Winters Auswertung über einen Tag (22.10.2016) und für eine saisonale Kom-
ponente von 1 Tag. Der resultierende RMSE=366. 

4.3.4 SARIMA Modell 

Die Leistung des SARIMA-Modells über einen Zeitraum von einem Monat ist in Abbildung 

14 und für einen Tag in Abbildung 15 zu sehen. Beachten Sie, dass die Performance des 

SARIMA-Modells besser ist als die entsprechende Performance der Holt-Winters-Modelle 

und fast identisch mit dem Persistenzmodell. 

 

Abbildung 14 SARIMA-Modell vom Typ (1,1,1)(1,1,1)96 mit einer Auswertung über einen Monat 
(vom 01.10.2016 bis 31.10.2016). Der resultierende RMSE=163. 
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Abbildung 15 SARIMA-Modell vom Typ (1,1,1)(1,1,1)96 mit einer Auswertung über einen Tag 

(22.10.2016). Der resultierende RMSE=211. 

 

4.3.5 Feature-Extraktionsmodell 

Die Leistung der Feature-Extraktionsmethode über einen Zeitraum von einem Monat und 

einem Tag ist in Abbildung 16 und Abbildung 17 dargestellt. Wir haben festgestellt, dass 

die Feature-Extraktionsmethode Ähnlichkeiten mit früheren Perioden (d.h. saisonale Ef-

fekte) besser erfassen kann als das kombinierte Auto-Regressive- und Persistenzmodell.  

Der daraus resultierende Prognosefehler (RMSE) wurde um 50% reduziert. 

 

Abbildung 16 Feature-Extraktionsmethode über einen Monat (vom 01.10.2016 bis 31.10.2016). 
Der resultierende RMSE=82. 
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Abbildung 17 Feature-Extraktionsmethode mit einer Auswertung über einen Tag (22.10.2016). Der 
resultierende RMSE=103. 

 

4.3.6 Gesamtleistungsvergleiche 

In der folgenden Tabelle 3 haben wir die resultierenden RMSE-Ergebnisse aller Methoden 

über die Dauer von 1 Tag und 1 Monat zusammengefasst. Im Allgemeinen beobachten wir, 

dass die Feature-Extraktionsmethode, die mehrere Persistenz-Features (die für die Last-

prognose sehr spezifisch sind) kombiniert, alle anderen Methoden übertrifft. 

Tabelle 3 RMSE-Vergleich der untersuchten Lastprognosemethoden. 

Duration RMSE (1 day) RMSE (1 month) 

Persistenz 153 189 

Holt-Winters 305 288 

AR+Persistenz 174 159 

SARIMA 211 163 

Feature Extraktion 103 82 
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5 Warmwassernutzung  

5.1 Datenbeschreibung und –aufbereitung 

Die Datenbasis für die Erstellung der Warmwassernutzungsprognosen sind 20 Smart-Boi-

ler, die bei Kunden der TIWAG verbaut sind und ca. seit März 2019 Daten liefern. Der 

integrierte Hardware-Controller in den elektrischen Warmwasserspeichern liefert mehrmals 

pro Minute Werte von Temperatursensoren, die an unterschiedlichen Stellen im Speicher 

angebracht sind. Daraus wird mit einer speziellen Berechnungsmethode der aktuelle Ener-

giegehalt (=Kapazität) des Wassers im Boiler berechnet (in kWh). Weiters liefert der Con-

troller die momentane elektrische Leistungsaufnahme. Leider ist kein Durchflusssensor 

verbaut, um die Menge von Warmwasserzapfungen zu ermitteln, weshalb eine alternative 

Approximation mit Hilfe der Änderung der Kapazität angestrebt wurde. Die verfügbaren 

Daten wurden exportiert und in folgender Aufbereitungs-Pipeline durchlaufen, um entspre-

chend bereinigte und vorberechnete Daten für die Prognosemodelle zu erhalten. 

 

Abbildung 18 Die Schritte der Datenaufbereitung dienen zum Erstellen von passenden Eingabe-
Daten für die Prognosemodelle. 

Folgende Spalten sind in der Input-Datei enthalten: Die Geräte-ID, der UTC-Zeitstempel 

der Messung, elektr. Leistung in kW und Energieinhalt in kWh. Es wurde entschieden die 

Warmwasserzapfungen in einer Auflösung von einer Stunde zu berechnen, da höhere Auf-

lösungen (z.B. 15 Minuten) schlechte Ergebnisse und viel längere Laufzeiten in ersten Ex-

perimenten zeigten. Als Beispiel dafür kann genannt werden, dass es wahrscheinlicher ist, 

dass eine morgendliche Dusche in derselben Stunde passiert als im selben 15 Minuten-

Block. Der wichtigste Schritt in der Pipeline ist natürlich den Warmwasserverbrauch zu 

berechnen. Dazu wurde der Warmwasserspeicher als offenes thermodynamisches System 

modelliert, dem Energie über die elektrische Arbeit des Heizstabes und das einfließende 

Wasser zugeführt, und Energie über Zapfungen und Verlustleistung genommen wird. 

 

Abbildung 19 Der Boiler modelliert als offenes thermodynamisches System. 
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Der erste Hauptsatz der Thermodynamik besagt, dass keine Energie in einem thermody-

namischen System verloren gehen kann. Wir erstellen eine vereinfachte Form der Ener-

giebilanz mit folgender Gleichung: 

∆𝑄ℎ𝑒𝑎𝑡𝑒𝑟 =  𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 + 𝑄𝑖𝑛𝑙𝑒𝑡 − 𝑄𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 − 𝑄𝑙𝑜𝑠𝑠 

Die Änderung der internen Energiemenge ist bekannt, ebenso die elektrische Arbeit. Der 

Energie-Verlust, der trotz guter Isolierung entsteht, wurde empirisch ermittelt und mit 

dem Datenblatt des Boilers abgeglichen und beträgt ca. 0,05 kWh pro Stunde. Die Ener-

gie des zufließenden Wassers kann mit 0 angesetzt werden, da für die Berechnung der 

Energiemenge im Boiler die Leitungswassertemperatur der Bezugspunkt ist. 

Daraus ergibt sich die folgende Gleichung zur Berechnung des approximierten Warmwas-

serverbrauchs: 

𝑄̃𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  max (0, 𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 − ∆𝑄ℎ𝑒𝑎𝑡𝑒𝑟 − 𝑄𝑙𝑜𝑠𝑠) 

Um sicher zu gehen, dass keine negativen Werte für den Verbrauch entstehen im Falle 

eines Messfehlers bzw. durch die Annäherung, wird der Wertebereich auf nicht-negativ 

eingeschränkt. Abbildung 20 zeigt die berechneten Warmwasserverbrauch (in Form von 

Energie) von zwei unterschiedlichen Haushalten. 

 

 

Abbildung 20 Beispiele von unregelmäßigem und regelmäßigem Warmwasserverbrauch in zwei 
verschiedenen Haushalten 

5.2 Methodik 

Es wurde angestrebt klassische statistische Prognosemethoden mit einem modernen 

künstlichen neuronalen Netz Ansatz zu vergleichen. Statistische Vorhersagemodelle wer-

den schon sehr lange verwendet, erste ARMA Modelle wurden bereits in den späten 1930er 

Jahren entwickelt und Methoden der exponentiellen Glättung in den 1950ern (Majid & Mir, 

2018). Diese beiden linearen Methoden sind laut Hyndman heute noch die am häufigsten 
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eingesetzten Modelle für die Prognose von Zeitreihen (Hyndman & Athanasopoulos, 2018). 

Das Problem von linearen Modellen ist die beschränkte Lernfähigkeit von nur linearen Zu-

sammenhängen z.B. zwischen zeitlich versetzten Beobachtungen oder anderen Variablen. 

Reale Zeitreihen zeigen oft nichtlineares Verhalten, weshalb auch nichtlineare Modelle oft 

besser geeignet sind (Hagan & Behr, 1987). Künstliche neuronale Netze (ANNs) ermögli-

chen die Modellierung dieser nichtlinearen Zusammenhänge und wurden durch die stei-

gende Rechnerleistung und Evolution von GPUs in den letzten 2 Jahrzehnten sehr populär. 

Wir entschieden uns zwei statistische Modelle (SARIMA und Exponential Smoothing) mit 

einem speziellen Recurrent Neural Network, dem Long Short-Term Memory (LSTM), zu 

vergleichen. Der Prognose-Horizont, d.h. der Zeitraum für den eine Prognose erstellt wird, 

wurde mit 48 Stunden festgelegt.  

5.2.1 Fehlermetriken 

Speziell im Bereich von Prognosen wird die Qualität von Modellen meist in Form von Feh-

lermetriken gemessen, die den quantitativen Unterschied zwischen echten (𝑦𝑡) und vor-

hergesagten (𝑦̂𝑡) Werten ausdrückt. Die Festlegung einer geeigneten Fehlermetrik ist eine 

sehr wichtige, aber keineswegs leichte Entscheidung. Eine gute Metrik sollte unverfälscht, 

symmetrisch (außer Asymmetrie ist erwünscht), universell anwendbar, Skalen-unabhängig 

(für Vergleiche) und einfach zu interpretieren sein. Unzählige Fehlermetriken existieren, 

welche grob in folgende fünf Kategorien eingeteilt werden können (Hyndman & Koehler, 

2006): 

• Maßstabsabhängige Metriken: Die Skala der Metrik hängt von 

der Skala der Daten ab, d.h. Daten mit unterschiedlicher Skalierung 

können nicht miteinander verglichen werden. Beispiele: Mean Abso-

lute Error (MAE), Mean Square Error (MSE), Root Mean Square Error 

(RMSE). 

• Prozentuale Metriken: Der Fehler wird als prozentualer Wert an-

gegeben, d.h. diese Kategorie der Metriken ist skalenunabhängig. 

Die bekannteste Metrik aus dieser Klasse ist MAPE (Mean Absolute 

Percentage Error). MAPE hat zwei Nachteile: Erstens dürfen die 

Werte der Zeitreihe keine 0-Werte enthalten und zweitens werden 

negative Fehler (𝑦𝑡 < 𝑦̂𝑡) stärker bewertet als positive (=Asymmet-

rie). 

• Metriken basierend auf relativen Fehlern: Um Maßstabsunab-

hängigkeit zu erreichen werden Fehler von unterschiedlichen Metho-

den in Relation gesetzt. Meist wird für das zu vergleichende Modell 

ein einfaches (naives) Benchmark-Modell verwendet. Beispiel: Mean 

Relative Absolute Error (MRAE). 

• Relative Metriken: Im Unterschied zur oberen Klasse werden hier 

nicht die einzelnen Fehler im Verhältnis betrachtet, sondern zwei 

fertig berechnete Metriken. Vorzugsweise ist der Nenner im Verhält-

nis dieselbe Metrik aber aus Vorhersagen mit dem Benchmark-Mo-

dell (*) berechnet. Bsp: Relative Mean Absolute Error (RelMAE = 

MAE/MAE*). 

• Skalierte Metriken: In (Hyndman & Koehler, 2006) werden die 

Nachteile von relativen und auf relativen Fehlern basierenden Metri-

ken erörtert. Deshalb wird die Metrik „Mean Absolute Scaled Error“ 

(MASE) vorgeschlagen, um alle Nachteile der anderen Kategorien zu 

umgehen. MASE relativiert den MAE der Prognose mit dem „in-

sample“ MAE der Prognose der naiven Methode (Saisonal-Naiv/Ran-

dom Walk). Sollte die Zeitreihe eine Saisonalität aufweisen, wird der 

Parameter m entsprechend der Periode gesetzt (Saisonal-Naiv), an-

dernfalls wird m = 1 gesetzt, was einem Random-Walk-Modell ent-

spricht.  
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𝑀𝐴𝑆𝐸 =  
𝑀𝐴𝐸

𝑀𝐴𝐸𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒
∗ =  

1
𝑁

∑ |𝑒𝑡|𝑁
𝑡=1

1
𝑇 − 𝑚

∑ |𝑦𝑡 − 𝑦𝑡−𝑚|𝑇
𝑡=𝑚+1

 

 

Obwohl die Fehlermetriken MSE/RMSE, MAE und MAPE am gebräuchlichsten sind, entschie-

den wir uns für MASE als Metrik aufgrund seiner nützlichen Eigenschaften. MAPE konnte 

von Anfang an ausgeschlossen werden, da unsere Zeitreihen viele 0-Werte enthalten. Da 

wir unterschiedliche Modelle und auch Zapfprofile von 20 verschiedenen Haushalten mit 

unterschiedlichstem Zapfverhalten vergleichen, bietet sich MASE sehr gut an. Ein weiterer 

Vorteil ist, dass man auf einem Blick erkennt ob das Vorhersagemodell besser als das 

Benchmark-Modell ist, nämlich wenn MASE < 1 ist. 

5.2.2 Zeitreihenanalyse 

Zeitreihen können verschiedene Muster bzw. Komponenten aufweisen:  

• Trend: Ist der Durchschnitt der Werte einer Zeitreihe nicht konstant 

über die Zeit, wird von einem Trend gesprochen 

• Saisonalität: Ein saisonales Muster besteht aus Fluktuationen in der 

Zeitreihe, die durch bestimmte zeitliche Faktoren (z.B. spezifische 

Monate eines Jahres oder die Tageszeit) ausgelöst werden. Saisona-

litäten haben immer eine fixe Frequenz. 

• Zyklen: Ein Zyklus beschreibt wiederholte Fluktuationen mit unter-

schiedlicher Frequenz. Zyklen treten häufig in ökonomischen Zeitrei-

hen auf.  

Statistische Vorhersagemethoden setzen voraus, dass die Zeitreihen „stationär“ sind, d.h. 

dass sich die statistischen Eigenschaften wie Mittelwert und Varianz nicht mit der Zeit än-

dern. Sobald eine Zeitreihe einen Trend oder eine Saisonalität aufweist, muss entweder 

das Modell für Stationarität sorgen oder der/die Prognostiker/in zuerst entsprechende 

Transformationen auf die Daten anwenden. Eine einfache Möglichkeit Trends und Saisona-

litäten zu entfernen ist das zeitliche Differenzieren von Zeitreihen. Durch den Differenzie-

rungsschritt in der Datenaufbereitung sollten unsere Zeitreihen (Zapfprofile) bereits stati-

onär sein. Sogenannte Unit-Root-Tests, wie z.B. ADF oder KPSS, ermöglichen eine auto-

matisierte Feststellung, ob und wie oft eine Zeitreihe differenziert werden muss, um Sta-

tionarität zu erhalten.  

Eine weitere gute Analysemöglichkeit stellt die sogenannte (partial) Autocorrelation-

Function (ACF) dar. Mit ACF lässt sich der lineare Zusammenhang zwischen Beobachtun-

gen leicht darstellen. Die ACF-Diagramme (auch Korrelogramme) der Zapfprofile zeigen 

eine starke Korrelation zu Beobachtungen mit zeitlichem Versatz von 1 bzw. Vielfachen 

von 24 (Saisonalität mit Periode m=24). 
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Abbildung 21 ACF und PACF Diagramme für ein regelmäßiges (obere Reihe) und unregelmäßiges 
(untere Reihe) Zapfprofil 

5.2.3 Exponential Smoothing 

Die Methode der exponentiellen Glättung funktioniert mittels gewichteten Mittelwertes von 

vorherigen Beobachtungen. Die Gewichtungen verkleinern sich exponentiell je weiter die 

Beobachtungen in die Vergangenheit reichen, wobei 0 ≤ 𝛼 ≤ 1 der Glättungs-Parameter ist. 

Das sogenannte „Simple Exponential Smoothing“ (SES) lässt sich mit folgenden Gleichun-

gen darstellen: 

𝑦̂𝑡+ℎ = 𝑙𝑡 

𝑙𝑡 =  𝛼𝑦𝑡 + (1 − 𝛼)𝑙𝑡−1 

Sind die Parameter 𝑙0 und 𝛼 bekannt, lässt sich die rekursive Formel lösen und eine Vor-

hersage kann berechnet werden. Um diese beiden Parameter zu berechnen muss ein nicht-

lineares Optimierungsproblem durch Minimierung des Sum-of-Squares Fehlers gelöst wer-

den (Hyndman & Athanasopoulos, 2018). Holt und Winters haben die SES Methode um 

eine Trend- und Saisonalitätskomponente erweitert zu „Holt-Winters‘ additive seasonal 

method“ (Winters, 1960): 

𝑦̂𝑡+ℎ = 𝑙𝑡 + ℎ𝑏𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1) 𝑚𝑖𝑡 𝑘 = ⌊
ℎ − 1

𝑚
⌋ 

𝑙𝑡 =  𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)(𝑦𝑡−1 − 𝑏𝑡−1) 

𝑏𝑡 =  𝛽∗(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗)𝑏𝑡−1 

𝑠𝑡 =  𝛾(𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑚 

Diese Methode besitzt zwei weitere Glättungs-Parameter  𝛽∗ und 𝛾 für den Trend bzw. Sai-

sonalität. 
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5.2.4 SARIMA 

SARIMA ist ein Akronym für „Seasonal Auto-Regressive Integrated Moving Average“. 

SARIMA Modelle werden immer durch eine Ordnung (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑚 bestimmt, wobei p, 

q, P und Q den maximal zu berücksichtigenden zeitlichen Versatz angeben und d und D 

den Grad der Differenzierung und die Großbuchstaben immer für den saisonalen Teil ver-

antwortlich sind. 

Um die Notation zu vereinfachen, empfiehlt es sich den sogenannten „Backshift-Opera-

tor“ einzuführen. 

𝐵𝑚𝑦𝑡 = 𝑦𝑡−𝑚 

Die vollständige Beschreibung eines SARIMA-Modelles kann durch folgende Gleichung er-

folgen: 

 

Der AR-Teil in der Gleichung kann als lineare Regression von versetzten Beobachtungen 

und der MA-Teil von versetzten Vorhersagefehlern (weißes Rauschen = 𝜀𝑡) gesehen wer-

den. Die Parameter 𝑐, 𝜙, Φ, 𝜃, Θ werden durch Maximum-Likelihood-Estimation bestimmt. 

5.2.5 LSTM 

Klassische rekurrente neuronale Netzwerke (RNNs) eignen sich sehr gut, um sequenzielle 

Daten wie Sätze in der Sprachverarbeitung oder Zeitreihen zu lernen. Allerdings haben 

RNNs das Problem der verschwindenden oder explodierenden Gradienten bei Langzeit-

Abhängigkeiten. Das Long Short-Term Memory wurde von (Hochreiter & Schmidhuber, 

1997) entwickelt, um dieses Problem zu beheben. 

Den Kern einer sogenannten LSTM-Zelle bildet der Zustand 𝑐𝑡, der als „Gedächtnis“ fun-

giert. Dieser Zustand wird rückgeführt und durch sogenannte „Gates“ modifiziert. Ein Gate 

besteht aus einem einzelnen neuronalen Netz-Layer mit einer Sigmoid-Aktivierungsfunk-

tion, gefolgt von einer elementweisen Multiplikations-Operation ⊗. Jedes Gate wirkt als 

Filter, da jedes Element des Inputs mit einem Faktor zwischen 0 und 1 multipliziert wird. 

Ein LSTM hat 3 Gates: Input, Output- und Forget-Gate. Das Input-Gate steuert wieviel von 

der aktuellen Information in das „Gedächtnis“ wandert, das Forget-Gate welche Informa-

tion gelöscht werden soll, und das Output Gate welche Information vom internen Zustand 

an den Ausgang gelangen soll. 

 

Abbildung 22 Die interne Struktur eines LSTMs. Quelle: (Deloche) 
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Für eine detaillierte Beschreibung und Erklärung der Funktionsweise und des Lernverfah-

rens verweisen wir auf den Original-Artikel (Hochreiter & Schmidhuber, 1997) und 

(Goodfellow, Bengio, & Courville, 2016). 

5.3 Evaluierung 

5.3.1 Evaluierungsstrategie 

Die typische Vorgehensweise um die Leistung von Vorhersagemodellen zu ermitteln, ist 

das aufteilen des Datenbestandes in ein Trainings-Set und ein Test-Set. Die Modell-Para-

meter werden aus den Trainings-Daten ermittelt, während die Fehlermetrik anhand des 

auf das Test-Set angewandte Modell berechnet wird, um die Leistungsfähigkeit (=Genera-

lisierungsfähigkeit) des Modells bei noch neuen, ungesehenen Daten zu testen. Der Anteil 

des Trainings-Sets von den Gesamtdaten wurde auf 80% festgelegt, die restlichen 20% 

für das Test-Set. 

Klassische Kreuzvalidierungsverfahren mit zufälligen Aufteilungen können bei Zeitreihen 

nicht angewendet werden, da die chronologische Ordnung der Beobachtungen beibehal-

ten werden muss.  

 

Abbildung 23 Zeitreihen-Kreuzvalidierung mit konstanter Trainings-Set-Größe und rollendem 
Zeitfenster 

Bei den statistischen Modellen wurde die Evaluierungs-Variante aus Abbildung 23 Zeitrei-

hen-Kreuzvalidierung mit konstanter Trainings-Set-Größe und rollendem Zeitfenster mit 

nicht überlappenden Training-Sets einer Länge von 8 Wochen angewandt. Das Test-Set 

enthält 48 Werte, was einem Zeitraum von 2 Tagen und somit dem Vorhersagezeitraum 

entspricht. Diese Strategie wurde für alle 20 Geräte durchgeführt und die individuellen 

Ergebnisse (MASE-Werte) gemittelt, um ein Gesamtergebnis zu erhalten. Für das SARIMA-

Modell wurde weiters eine Rastersuche über die Ordnungs-Parameter p, P, q und Q mit 

möglichen Werten 0, 1 und 2 durchgeführt. Die Ordnung der Differenzierung wurde nach 

Ausführung von Unit-Root-Tests auf 0 gesetzt. Dadurch konnte eine beste Konfiguration 

(2,0,0)(0,0,1)24 gefunden werden. 

 

Abbildung 24 Die Zeitreihen-Kreuzvalidierung für überwachtes maschinelles Lernen wird nur auf 
das Test-Set angewandt 
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Die Evaluierung von Modellen aus der Kategorie „überwachtes maschinelles Lernen“, wie 

z.B. künstliche neuronale Netze, unterscheidet sich zur ersten Validierungs-Variante, da 

die Modelle mit sehr vielen Input/Output-Paaren aus dem Trainings-Set „gefüttert“ werden, 

um ein Lernergebnis zu erzielen. Nach dem Lernen werden Daten-Paare aus dem Test-Set 

für die Evaluierung genommen (siehe Abbildung 24). 

Im Falle des LSTM-Modells untersuchten wir zwei verschiedene Ansätze: 

1. Für jeden Boiler wurde ein eigenes LSTM-Netz trainiert und evaluiert 

und die einzelnen Ergebnisse gemittelt ➔ „Single-Device Model“ 

(SD) 

2. Nur ein LSTM-Modell wurde mit allen von 20 Geräten verfügbaren 

Daten trainiert ➔ „Multi-Device Model“ (MD) 

Weiters wurde für den Input des RNNs ein Zeitraum von 2 Wochen festgelegt, der Zeitraum 

des Outputs entspricht wieder dem Prognose-Horizont von 48 Stunden. 

In Erwartung auf möglicherweise bessere Ergebnisse wurden dem Modell zusätzliche „Fea-

tures“ zum Warmwasserverbrauch zugeführt: 

• Anzahl der Haushaltsmitglieder: Natürlicherweise sollte die Anzahl 

der Bewohner eines Haushalts eine große Auswirkung auf das Zapf-

profil haben. Leider besteht keine Garantie, dass die verfügbaren 

Daten über die Bewohneranzahl aktuell und richtig sind. 

• Wochentag: Speziell an Wochenenden darf ein anderes Verhalten 

erwartet werden. 

• Durchschnitt des Verbrauchs der letzten 3 Stunden (MA3): Aufgrund 

der ACF Diagramme wurde ermittelt, dass der aktuelle Wert stark 

von den letzten 1-2 Stunden abhängt. Evtl. sollte das Modell explizit 

darüber informiert werden. 

• Geräte-ID (nur Multi-Device Modell): Im Falle des einzelnen Modells, 

das mit den Profilen von allen 20 Geräte trainiert wird, könnte es 

Sinn machen dem Modell mitzuteilen, von welchem Gerät die Trai-

ningsdaten stammen. 

 

 

 

Abbildung 25 Die Architektur des evaluierten LSTM-Modells 

Um Overfitting zu vermeiden, wurden die Regularisierungs-Techniken „Dropout“ und 

„Early-Stopping“ verwendet. Als Optimierer wurde „Adam“ verwendet, da dieser als schnell 

und zuverlässig gilt (Goodfellow, Bengio, & Courville, 2016). 
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Es wurde eine Rastersuche über die Hyper-Parameter Batch-Size (BS), Learning-Rate (LR), 

Anzahl der Neuronen (U) und Dropout-Rates (DO) vorgenommen. Wir evaluierten die 

Batch-Größen 64 und 259, Learning-Rates 0.01 und 0.001, 32 und 62 Neuronen und Drop-

out-Raten von 0.0 und 0.2. 

5.3.2 Ergebnisse 

Tabelle 4 Ergebnisse der Evaluierung in Form der Fehlermetriken Mean Absolute Scaled 

Error (MASE) und Mean Absolute Error (MAE). die Ergebnisse der Evaluierung mit SARIMA 

als Modell mit dem kleinsten Fehler (MASE = 0.623). Die Fehlermetrik MAE ist ohne Bench-

mark-Modell wenig aussagekräftig und vergleichbar, wurde aber trotzdem inkludiert, um 

sich eine Vorstellung über die absolute Größenordnung machen zu können. Alle MASE-

Werte sind kleiner als 1, was bedeutet, dass zumindest alle Modelle besser als das Bench-

mark-Methode „Saisonal-Naiv“ sind. 

Tabelle 4 Ergebnisse der Evaluierung in Form der Fehlermetriken Mean Absolute Scaled Error 

(MASE) und Mean Absolute Error (MAE).  

Modell Beste Konfiguration MAE MASE 

Exponential Smoothing Kein Trend 0.124 0.826 

SARIMA (2,0,0)(0,0,1)24 0.091 0.623 

SD LSTM BS 64, LR 0.01, U 64, DO 0.2 0.129 0.994 

SD LSTM + MA3 BS 64, LR 0.01, U 64, DO 0.0 0.120 0.934 

SD LSTM + Wochentag BS 64, LR 0.01, U 64, DO 0.2 0.099 0.795 

SD LSTM + #Bewohner BS 64, LR 0.01, U 64, DO 0.2 0.096 0.782 

MD LSTM BS 64, LR 0.01, U 32, DO 0.2 0.082 0.969 

MD LSTM + Geräte-ID BS 64, LR 0.01, U 32, DO 0.0 0.080 0.868 

MD LSTM + MA3 BS 64, LR 0.01, U 32, DO 0.2 0.082 0.939 

MD LSTM + Wochentag BS 64, LR 0.01, U 64, DO 0.0 0.073 0.822 

MD LSTM + #Bewoh-

ner 

BS 64, LR 0.01, U 32, DO 0.2 0.078 0.891 
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Abbildung 26 Beispiel-Vorhersage des SARIMA-Modells 

Das Multi-Device LSTM Modell war bei einigen Konfigurationen nicht imstande zu lernen, 

was zur Folge hatte, dass die Vorhersage eine konstante 0 war. Das resultierte in einem 

niedrigem MAE und somit auch zu einem kleinem MASE, da ein großer Teil der Zeitreihen 

ebenfalls 0-Werte sind. 

Das Single-Device LSTM-Modell zeigte bessere Ergebnisse bei Inkludierung der Features 

„Wochentag“ bzw. „Anzahl Bewohner“, allerdings entstehen die niedrigeren Fehlermetriken 

teilweise wieder durch Vorhersagen von langen 0-Werte-Sequenzen bei unregelmäßigen 

Profilen, die schwer zu prognostizieren sind. Dabei ist nicht festzustellen, ob das LSTM 

gelernt hat die 0-Sequenzen zu erzeugen, um den Fehler möglichst gering zu halten oder 

„Nichts“ bzw. das „Falsche“ gelernt hat. Eine Beispiel-Prognose für dieses Verhalten in Ab-

bildung 27 Die Prognose des SD-LSTMs liefert konstant "0" bei einem unregelmäßigem 

Profil. sehen. 

 

Abbildung 27 Die Prognose des SD-LSTMs liefert konstant "0" bei einem unregelmäßigem Profil. 

 

Generell kann gesagt werden, dass die Prognose von Warmwasserzapfungen ein schwierig 

zu lösendes Problem ist, da die Profile zu einem gewissen Grad einem stochastischem Pro-

zess entsprechen. 

Die Einfachheit der statistischen Modelle ist ein großer Vorteil gegenüber den aufwändig 

zu trainierenden neuronalen Netzen. Weiters ist die Suche nach geeigneten Hyper-Para-

metern beim maschinellen Lernen ein zeitaufwändiger Prozess.  

Die rasterbasierte Suche von Hyper-Parametern könnte in weiteren Experimenten durch 

Techniken wie Bayes’sche oder gradientenbasierte Optimierung ausgetauscht werden, um 

eventuell bessere Ergebnisse mit LSTM-Modellen zu erhalten. 
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Abbildung 28 Gute Vorhersage des SD LSTMs mit zusätzlichem Feature "Wochentag" 

5.4 Erweiterung der Methodik: LSTM und FFNN 

Parallel zu den zuvor beschriebenen Methoden wurde unterschiedliche Ausprägungen von 

LSTM und FFNN Modellen entwickelt und mit unterschiedlichen Konfigurationen getestet. 

Das Ziel hinter dieser Entwicklung war es, ein Modell zu entwickelt, das sowohl für den 

Warmwasserverbrauch als auch für den Verbrauch von anderen Energieformen (z.B. elekt-

rische Energie) ohne weitere Anpassungen genutzt werden kann. 

5.4.1 Prognose – 24-Stunden Warmwasserverbrauch 

Für die Prognose des Warmwasserverbrauchs in einem zeitlichen Horizont von 24 Stunden 

wurden unterschiedliche Modelle auf Basis von künstlichen neuronalen Netzwerkarchitek-

turen mit verschiedenen zeitlichen Auflösungen (15 Minuten, 1 Stunde, 4 Stunden) imple-

mentiert: 

• Long Short Term Memory (LSTM) networks. Dieses Modell wird ein-

mal mit Zeitreihen des Warmwasserverbrauchs trainiert. Ein zweites 

Modell gleicher Architektur wird neben den Zeitreihen des Warmwas-

serverbrauchs mit zusätzlichen Features „ausgestattet“ und trainiert. 

Das Ziel dieses Ansatzes war die Ermittlung des Einflusses der zu-

sätzlichen Features auf die Qualität der Prognosen. Die zusätzlichen 

Features umfassen: die Tageszeit, den Wochentag, ob es sich um ei-

nen Feiertag handelt und autoregressive Informationen (zeitlichen 

Verschiebung der Zeitreihen). 

Grundsätzlich können LSTM networks als Erweiterung zu Recurrent 

Neural Networks (RNN) gesehen werden. Beide Modelle können In-

formationen in einem inneren Zustand (Gedächtnis – siehe Beschrei-

bung LSTM oben) speichern. Im Vergleich zu RNN können mittels 

LSTM aufgrund ihrer inneren Struktur auch lange sequentielle Zeit-

reihen verarbeitet werden. 

• Feedforward Neuronales Netz mit Warmwasserverbrauchs-Zeitrei-

hen. Eine Ebene in einem Neuronalen Netz wird durch eine Vielzahl 

von Neuronen gebildet, wobei jedes Neuron einer Ebene dieselben 

Input-Daten erhält. Die Ausgangwerte jeder Ebene stellt ein Vektor 

dar, der die Ausgangsdaten jedes einzelnen Neurons dieser Ebene 

enthält. Ein Vektor wird von einer Ebene (als Eingangssignal) verar-

beitet, der Ausgangsvektor dient wiederum der nächsten Ebene als 

Eingang. Werden mehrere dieser Ebenen gestapelt, wird dieser Vor-

gang als Deep Learning bezeichnet. Abbildung 29 zeigt ein einfaches 

Beispiel eines Neuronalen Netzes, in dem fünf Neuronen eine Ebene 

bilden. Durch die Stapelung mehrerer solcher Ebenen kann ein belie-

big großes Netz gebildet werden. Unter einem vollständig-
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verbundenen Netz versteht man ein Netzwerk, bei dem der Ausgang 

einer Ebene als Eingang jedes einzelnen Neurons der Folgeebene 

dient.  

 

Abbildung 29 Vollständig-verbundenes Feedforward Neural Network. 

 

Die Modelle wurden zur Analyse der Prognosequalität mit einer Benchmark (Tag zuvor, 

Wochen-Durchschnitt) verglichen. Zusätzlich wurde ein „Allgemeines Modell“ mit einem 

„Individuellen Modell“ in Bezug auf die Prognosequalität verglichen. Beim Allgemeinen Mo-

dell erfolgt das Training des Neuronalen Netzes auf Basis historischer Verbrauchdaten aller 

Haushalte, beim „Individuellen Modell“ wird jeweils nur der Haushalt-spezifische histori-

sche Datensatz für das Training verwendet. 

5.4.2 Error- und Performance-Metric 

Um die Qualität von Prognosemodellen erheben zu können, werden zwei Error-Metriken 

angewendet: 

• Error-Metric: Mittels Mean-Absolute-Error (MEA) kann die Abwei-

chung zwischen Prognose-Zeitreihen und den tatsächlichen Messwer-

ten angegeben werden: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑡 − 𝑦̂𝑡|

𝑛

𝑡=1

 

wobei 𝑛 for die Länge der Zeitreihe steht (24 für eine stündliche Auf-

lösung oder 96 für eine Auflösung von 15 Minuten). Die berechnete 

Abweichung zeigt die Abweichung zwischen den Prognosewerten 𝑦̂𝑡 

und den tatsächlichen Werten 𝑦𝑡 gemittelt über alle Zeitschritte 𝑡. Je-

doch führt dieses Verfahren aufgrund des punktweisen Vergleichs 

aufgrund eines möglicherweise auftretenden „Double Penalty Errors“ 

zu hohen Abweichungen: Der „Double Penalty Error“ beschreibt eine 

Situation, in der der tatsächliche Bedarf und die Prognose-Zeitreihe 

einen ähnlichen Verlauf aufweisen, jedoch um wenige Zeitschritte 

versetzt (siehe Abbildung 29). Im Extremfall sind beide Zeitreihen 

identisch, jedoch um einen einzelnen Zeitschritt versetzt. Grundsätz-

lich würde es sich in diesem Fall um eine qualitativ hochwertige Prog-

nose handeln – vor allem in jenen Anwendungen, in denen der zeitli-

che Aspekt vernachlässigt werden kann. Durch die punktweise Be-

rechnung der Abweichung zwischen Prognose- und Messdaten in 



Deliverable D7 | Beschreibung der Forecasts und Flexibilitätspotentiale für jeden Use Case und für jede Techno-
logie sowie unter Berücksichtigung der Eigeninteressen   38 

jedem Zeitschritt, kann sich eine hohe Abweichung zum Zeitschritt t 

sowie im nachfolgenden Zeitschritt ergeben (wodurch sich die Be-

zeichnung des Double Penalty Errors ergibt).  

• Performance Metric: Aufgrund der zuvor beschriebenen Schwierigkeit 

der punktweisen Error-Metric, wurde ein zweites Verfahren einge-

setzt. Zusätzlich zur mittleren Abweichung MAE wird die Abweichung 

der gesamten Energiemenge berücksichtigt, wodurch sich eine Ver-

besserung in der Prognose-Qualitat ergibt: 

𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = |∑ 𝑦̂𝑡

𝑛

𝑡=1

− ∑ 𝑦𝑡

𝑛

𝑡=1

| 

wobei sich 𝑛 wiederum auf die Länge der Zeitreihen und 𝑡 auf die 

Zeitschritte bezieht. Der erste Term der rechten Seite der angegebe-

nen Gleichung enthält die prognostizierte Gesamtenergie and einem 

Tag und der rechte Term die tatsächlich gemessene Energie. 

 

Abbildung 30 Grafische Darstellung des Double Penalty Errors 

5.4.3 Trainings- und Testdaten 

Die vorhandenen Daten über den Warmwasserverbrauch wurden in ein Set von Trainings-

daten sowie in ein Set von Testdaten eingeteilt. Die Modelle lernen anhand der Trainings-

daten die optimale Einstellung der Parameter, die den Zusammenhang zwischen Eingangs- 

und Ausgangsdaten beschreiben. Anschließend werden die Modelle mittels Testdaten vali-

diert um zu prüfen, ob auch unvorhersehbare Eingangsdaten zu verwendbaren Ergebnissen 

führen.  

Die Aufteilung der Daten erfolgte in einem Verhältnis von 3:1, das bedeutet, dass 75 % 

der Daten für den Lernprozess und 25 % der Daten für die Validierung der Modelle ver-

wendet wurden.  
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5.4.4 Ergebnisse 

 
Abbildung 31 Warmwasser-Verbrauch einer Woche (5 Haushalte) 

Abbildung 31 zeigt den Warmwasser-Verbrauch von 5 Haushalten einer Woche in einer 

Auflösung von 15 Minuten. Anhand dieser Grafik ist der dynamische und sehr volatile Was-

serverbrauch erkennbar. Dies führt zu einer enormen Herausforderung an die Modelle zur 

Vorhersage von zukünftigen Warmwasserentnahmen und zu hohen Fehlern zwischen den 

prognostizierten Zeitreihen und den tatsächlichen Entnahmen. 

 

 

Abbildung 32 Vergleich zwischen dem tatsächlichen Warmwasser-Verbrauch und den Ergebnissen 
der Prognosemodelle in einer Auflösung von 15 Minuten. 

Abbildung 32 zeigt den tatsächlichen Warmwasser-Verbrauch eines ausgewählten Haus-

haltes (blau „True“) in einer zeitlichen Auflösung von 15 Minuten sowie die Ergebnisse 
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der Prognose. Hierbei wurde ein generelles Modell trainiert (auf Basis der historischen 

Verbrauchsdaten aller Haushalte), das als Basis für die Prognose verwendet wurde.  

• „LSTM all“ (Long short-term memory with several model input para-

meters) zeigt die Vorhersage des Verbrauchs unter Verwendung zu-

sätzlicher Features (Wochentag, Feiertagsinformation, Stunde des 

Tages, Monat, Wohnungsgröße) und der historischen Verbrauchsda-

ten. 

• „LSTM one“ (Long short-term memory with one model input parame-

ter) zeigt die Vorhersage des Verbrauchs ohne Berücksichtigung zu-

sätzlicher Informationen – es wurde lediglich der historische Ver-

brauch als Eingangsgröße für das Training und die Prognose verwen-

det. 

• „MLP“ zeigt die Vorhersage des Verbrauchs auf Basis eines Feed For-

ward Neural Networks 

Offensichtlich verhalten sich die drei Modelle sehr ähnlich – nach Zeitschritt 40 wird in den 

Modellen eine signifikante Entnahme prognostiziert, ebenso werden mehrere Entnahmen 

zwischen Zeitschritt 60 und 80 in allen Modellen prognostiziert. Es kann festgehalten wer-

den, dass sich die Prognosen und der tatsächliche Verlauf weder in der Menge noch in den 

Zeitpunkten des Verbrauchs beim generellen Modell mit einer zeitlichen Auflösung von 15 

Minuten decken. 

 

 

Abbildung 33 Vergleich zwischen dem tatsächlichen Warmwasser-Verbrauch und den Ergebnissen 

der Prognosemodelle in einer Auflösung von 60 Minuten. 

Abbildung 33 zeigt die Ergebnisse der drei zuvor erwähnten Prognosemodelle im Vergleich 

mit dem tatsächlichen Verlauf in einer zeitlichen Auflösung von einer Stunde (im Vergleich 

zu Abbildung 32, bei der eine Auflösung von 15 Minuten verwendet wurde). In diesem Fall 

werden die Unterschiede zwischen LSTM und MLP deutlich sichtbar, wobei bei MLP höhere 

Entnahmen prognostiziert werden. Grundsätzlich ist aber auch hier eine signifikante Ab-

weichung zwischen Prognose und tatsächlichem Verbrauch erkennbar.  
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Abbildung 34 Warmwasser-Entnahme einer Wärmepumpe in einer zeitlichen Auflösung von einer 
Stunde. 

Abbildung 34 zeigt die Warmwasser-Entnahme einer ausgewählten Wärmepumpe („True“ 

illustriert die tatsächliche Entnahme, orange und grün zeigen die prognostizierten Zeitrei-

hen des Verbrauchs). In diesem Fall konnten deutlich bessere Ergebnisse im Vergleich zu 

den vorherigen Beispielen erzielt werden – sowohl die Entnahme-Mengen als auch deren 

Zeitpunkte konnten in beiden Modellen relativ gut prognostiziert werden. 

 

 

Abbildung 35 Mittlerer absoluter Fehler der Modelle für die Trainings- und Testdaten. 

Abbildung 35 zeigt den mittleren absoluten Fehler (MAE) in Liter für die Benchmark und 

die drei implementierten Prognosemodelle sowohl für die Trainings- (links) als auch die 

Testdaten (rechts). Aufgrund dieser Ergebnisse ist erkennbar, dass sich die LSTM-

Prognosemodelle unwesentlich unterscheiden. 

Zusammenfassung der Ergebnisse: 

• Die Prognose des Warmwasser-Verbrauchs auf Einzelhaushaltsebene 

ist aufgrund der hohen Dynamik sowie des volatilen Verhaltens äu-

ßert schwierig zu prognostizieren und führt zu hohen Abweichungen 
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zwischen dem tatsächlichen Verlauf und den prognostizierten Zeitrei-

hen. 

• Die Zeitreihen des Warmwasser-Verbrauchs enthalten an vielen Zeit-

punkten den Wert 0 (da an diesen Zeitpunkten keine Entnahme statt-

gefunden hat). Zusätzlich variiert der zeitliche Verlauf der Entnahmen 

sehr deutlich. Das führt letztendlich dazu, dass sich durch die ge-

wählte Fehler-Metrik die Abweichung zwischen Prognose und Realda-

ten doppelt auswirkt (Double Penalty Fault). 

• Die LSTM Prognosemodelle liefern keine besseren Ergebnisse (in Be-

zug auf die Abweichung zwischen Prognose- und Realdaten) als ein-

fache Feed Forward Neural Networks. 

• Die Verwendung von zusätzlichen Features bei LSTM (Wochentag, 

Feiertag, Wohnungsgröße, etc.) führte zu keiner signifikanten Ver-

besserung der Prognosequalität. 

Ausblick/Verbesserungspotential 

• Zusammenfassung/Gruppierung (Clustering) von Kunden mit einem 

ähnlichen Verbrauchsprofil sowie Training der Modelle und Prognose 

des Verbrauchs pro Kundengruppe. 

• Reduktion der zeitlichen Auflösung um einen Glättungseffekt zu er-

zielen. 

• Vorab-Filterung der Verbrauchsdaten um außergewöhnliche (Ur-

laubszeit) und fehlerhafte (Messfehler) Zeitreihen aus den Trainings-

daten zu entfernen, um die Beeinflussung der Modelle durch uner-

wünschte Daten zu minimieren. 

• Entwicklung und Nutzung einer angemessenen Fehler-Metrik für Zeit-

serien. 
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