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ZUSAMMENFASSUNG

In den letzten Jahren wird die Relevanz von flexiblen Prosumern in Energiemarkten auf
europadischer Ebene untersucht. Die aktive Beteiligung mehrerer fernsteuerbarer Prosu-
mer-Komponenten wie Warmepumpen, Speichersysteme, Boiler, Photovoltaik und E-Mo-
bilitat ermdglicht den einzelnen Prosumern unterschiedliche systemdienliche Dienstleistun-
gen zu erbringen. Im Flex+ Projekt werden dazu skalierbare Optimierungsalgorithmen ent-
wickelt, die unter Berlicksichtigung der wirtschaftlichen und nicht-wirtschaftlichen Interes-
sen aller Teilnehmer eine optimale Nutzung und Vermarktung der vorhandenen Flexibilitat
ermadglichen.

Damit die vorhandene Flexibilitat jedoch optimal genutzt werden kann, ist es notwendig,
dass wir die Merkmale und Faktoren, die sie beeinflussen, lber einen kurzen Zeithorizont
(ein oder zwei Tage im Voraus) genau vorhersagen. Zu diesem Zweck werden in diesem
Dokument Prognosemodelle erarbeitet, mit denen die Entwicklung mehrerer wichtiger
Merkmale, die sich direkt auf die verfiigbare Flexibilitdt auswirken, vorhergesagt werden
kann. Insbesondere beschreiben wir ausfiihrlich die Parameter, die prognostiziert werden
missen, und die fir die Gesamtoptimierungsleistung entscheidend sind. Dariliber hinaus
stellen wir eine detaillierte Beschreibung der Methoden zur Ableitung dieser Prognosen
sowie deren Leistungsvermaégen zur Verfligung.
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1 Einfuhrung

Eines der Hauptziele des Flex+-Projekts ist die Entwicklung genauer Prognosemodelle zur
Erzeugung von Vorhersagen lber jene Parameter, die fiir den Betrieb der Komponenten
(Batteriespeicher, Warmepumpen, Boiler und Elektroautos) entscheidend sind. Solche Vor-
hersagemodelle werden direkt bei der Ableitung der Optimierungsstrategien fiir das Flexi-
bilitatsangebot in den Strommarkten verwendet. Daher kann die Vorhersagegenauigkeit
der abgeleiteten Modelle die Leistung der Optimierung erheblich beeinflussen.

In diesem Ergebnisdokument beschreiben wir detailliert die Parameter, die prognostiziert
werden miussen, um die Flexibilitatspotenziale fiir jeden Use-Case und flir jede Technologie
(Batteriespeicher, Warmepumpen, Boiler und Elektroautos). Diese Prognosen werden dann
direkt in die Optimierung zur Berechnung der optimalen Flexibilitdtsangebot in den Strom-
markten einbezogen. Da die Berechnung des Flexibilitatspotenzials direkt von der Model-
lierung jeder in der Optimierung verwendeten Technologie abhdangt (die detailliert in De-
liverable D9 dargestellt wird), stellen wir hier nur die Prognosen der wichtigen Parameter
flr jede Technologie dar und nicht direkt die Prognose des gesamten Flexibilitdtspotenzials.

Dartber hinaus geben wir eine detaillierte Beschreibung der Methoden zur Ableitung dieser
Prognosen sowie deren Leistungsvermogen. Im weiteren Verlauf des Dokuments werden
in Kapitel 2 die externen Prognosen zusammengefasst, die auBerhalb des Betriebs der
Komponenten liegen aber indirekt die Optimierung der Flexibilitat beeinflussen. In den Ka-
piteln 3, 4 und 0 beschreiben wir die Prognosemethodik fiir die Nutzung des Elektroautos,
den unflexiblen Teil der Lasten und die Warmwassernutzung.
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2 Externe Prognosen

2.1 Solareinstrahlung und PV-Erzeugung

Die Solaren Einstrahlungsprognosen und die PV-Erzeugungsprognosen werden von den
Projektpartnern (Fronius, IDM, etc.) durch Drittanbieter bezogen. Die Prognosen basieren
auf PV Modellen, welche die Nennleistung der Anlage, sowie Modulausrichtung und Auf-
stellwinkel berilcksichtigen. Fir ein PV-System kénnen maximal zwei unterschiedliche Aus-
richtungen angegeben werden. Der PV-Forecast kombiniert die beiden Ausrichtungen dann
zu einer Gesamtleistung fur ein PV-System.

Fir die prognostizierten Leistungswerte sind je nach Prognosehorizont unterschiedliche
Granularitaten in Watt verflgbar:

e 0-24 Stunden: 15 Minuten Werte
e 24-48 Stunden: 1 Stunden Werte
e 48-216 Stunden: 6 Stunden Werte

2.2 Strom- und Regelenergiepreise

Im Rahmen von dem Projekt wurden die langfristigen Preistrends analysiert, wie in De-
liverable 5 (Corinaldesi, et al., 2019) beschrieben. Die kurzfristigen Prognosen werden
durch die Lieferanten und den Regelenergieanbieter bereitgestellt. Es werden die folgenden
Preiseprognosen flir die Simulationen bzw. in weiterer Folge fiir die Demonstrationen ver-
wendet:

e Der stundliche Day-ahead Spotpreis der EPEX Spot wird von allen
Stromlieferanten fir die nachsten 72h vorhergesagt. Die Prognose
wird von einem externen Dienstleister bezogen und an die flex+ Platt-
form weitergeleitet. Wichtige Eingangsparameter flr die Prognhose
sind die Preise fiir Kohle, Gas und Ol sowie die Kosten fiir CO2 Zerti-
fikate. Eine weitere wichtige Rolle spielt die zu erwartende Einspei-
sung aus erneuerbaren Energien wie Wind und PV. Flr die Ermittlung
der Stromnachfrage werden neben der Temperatur auch die Typtag-
Profile und spezifische Kalenderinformationen genutzt.

e Regelleistung und Regelenergie, Abrufwahrscheinlichkeiten: Die Re-
gelleistungs- und Regelenergiepreise sowie die Abrufwahrscheinlich-
keiten werden basierend auf den historischen Daten der letzten Wo-
chen sowohl flr eine untere als auch die obere Position auf der Merit
Order abgeschatzt. Dabei ist bei der unteren Position auf der Merit
Order der Preis fur die Regelenergie geringer, daftr ist die Abrufwahr-
scheinlichkeit hdher, wahrend sich an den oberen Positionen die nied-
rigen Abrufwahrscheinlichkeiten mit hohen Preisen befinden Der op-
timierte Fahrplan kann Angebote fir diese zwei Positionen miteinbe-
ziehen.

e Durchschnittlicher Intraday-Preis ,, ID3": Intraday wird, im Gegensatz
zu den Day-ahead Spot Preisen, pay-as-bid gehandelt, das heift,
dass jeder den Preis bekommt, den er angeboten hat. Dementspre-
chend kdénnen abhéangig vom Zeitpunkt des Trades die Preise variie-
ren. Ein typischer Preis fiir die Bewertung von Intraday sind die ID3-
Preise, also der Durschnitt aller Angebote der letzten 3 Stunden.
Diese Preise werden von den Energielieferanten fir die nachsten 3
Stunden abgeschatzt.

e Rollierende Bid/Ask-Intraday-Preise: AuBerdem werden die realen
rollierenden, sich stiindlich verandernden Ask- und Bid-Preise fir den
Intraday-Preis fir jede Viertelstunde bzw. Stunde flr die nachsten
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drei Stunden bereitgestellt. Ab dann sind nur noch Prognosen verflg-
bar, wobei die Intraday-Prognose dem Day-Ahead-Forecast ent-
spricht.
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3 E-Car-Nutzung

Mit der stetig wachsenden Marktdurchdringung von Elektrofahrzeugen und der damit ein-
hergehenden steigenden Nachfrage elektrischer Energie, gewinnen die Verbrauchsprogno-
sen von E-Autos-Ladevorgangen an Bedeutung. Die Auswirkung des Ladens von Elektro-
fahrzeugen auf das elektrische Netz wird nicht nur von der gesamten benétigten Energie
und der maximalen erlaubten Leistung bestimmt, sondern auch von der Zeitspanne und
vom geographischen Ort, wo die Ladevorgange stattfinden.

Elektrofahrzeuge erzeugen zu bestimmten Zeitpunkten an bestimmten geographischen
Punkten des Netzes einen konzentrierten Leistungsbedarf. Um jederzeit eine hohe Anzahl
von Ladevorgangen gewadhrleisten zu kdénnen, ware heute ein bedeutender Ausbau des
elektrischen Netzes notwendig (Pollok, Hille, & Schnettler, 2009). Zeitliche Prognosen von
E-Autos-Ladevorgangen haben aus diesem Grund ein groBes Potential den Ausbau des
Stromnetzes und den damit verbundenen Investitionen zu reduzieren, denn sie wirden ein
effizienteres Management der Leistungsflisse auf Verteilungsebene ermdglichen.

Die traditionellen Verbrauchsprognosen von kleinen Verbrauchern basieren hauptsachlich
auf dem Wetterfaktor (wie Temperatur und Luftfeuchtigkeit). Verbrauchsprognosen von E-
Autos-Ladevorgangen sind komplizierter, denn sie sind auch von Benutzeraktionen stark
abhangig.

Einige Studien analysieren das Ladeverhalten von Elektrofahrzeugen und die daraus resul-
tierenden Lastprofile unter Beriicksichtigung der Unsicherheiten und stochastischen Eigen-
schaften. (Sokorai & A. Fleischhacker, 2018) entwickelt ein auf einer Markov-Chain basie-
rendes Tool, das die stochastische Natur der taglichen Nutzung einer Ladestation model-
lieren kann. Das Tool gibt als Ergebnis die Wahrscheinlichkeitsdichtefunktionen zum Laden
von Elektrofahrzeugen an, die in Abbildung 1 dargestellt sind.
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Abbildung 1 Wahrscheinlichkeitsdichtefunktionen von Plug-In-Zeiten.

Im Artikel (Zhuowei, 2011), wurde das Monte-Carlo-Simulationsverfahren angewendet,
um die Startzeit des Ladevorganges basierend auf Wahrscheinlichkeitsverteilungen zu be-
stimmen. Diese Studie unterscheidet zwischen mehreren Verbrauchern: Elektrobussen,
Taxis, Dienstwagen und Privatwagen. Wie in Abbildung 2 gezeigt, unterscheiden sich die
Ladeverhalten von den Verbrauchern erheblich.
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Abbildung 2 Ladezeiten der unterschiedlichen Verbraucher

Studien, wie (Feixiang, 2011) untersuchen die Eigenschaften des Verbrauchverhalten an
den Ladestationen durch stochastischen Modellen wie neuronalen Backpropagation-Netze.
Durch diese Methode wurde eine Eigenschaft der Ladevorgdnge festgestellt: Der Verbrauch
am Prognosetag ist der Verbrauch am selben Tag der letzten Woche sehr ahnlich. Es wird
hier gezeigt, dass unter Berlicksichtigung weiterer Einflussfaktoren (wie Wetter und Tem-
peratur) der Prognosen Fehler dann erheblich verringert werden kann.

Genaue und angemessene Lastprognosemethoden zur Beschreibung der Ladeverhalten
von Elektrofahrzeugen stellen heutzutage eine wichtige Garantie flir die Planung und den
Betrieb des zukilinftigen Versorgungssystems dar und werden unvermeidlich eine wichtige
Rolle bei der Automatisierung des elektrischen Systems spielen.
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4 Unflexible Stromlast

4.1 Datenbeschreibung und —-aufbereitung

Messungen des unflexiblen Lastverbrauchs jedes Haushalts wurden mit einer Granularitat
von 15 Minuten gesammelt. Damit stehen uns an jedem Tag 96 sequentielle Messungen
der unflexiblen Last aus jedem Haushalt zur Verfigung. Jede dieser Messungen zum Zeit-
punkt t stellt den Lastverbrauch wahrend des letzten 15min-Intervalls dar, d.h. den Ener-
gieverbrauch innerhalb des letzten 15min-Intervalls. In der folgenden Abbildung 3 und
Abbildung 4 stellen wir eine Stichprobe des gemessenen Lastverbrauchs von einem Haus-
halt innerhalb eines Monats bzw. eines Tages dar.

14K

2016-10-27 11:30:00
—load: 38

I JMUL ILLEWT

10/9 1011 10/13 1015

200 r | J
al J‘; i M UL m

o

= Load

Abbildung 3 Unflexibler Lastverbrauch eines Haushalts in einem Monat (von 01.10.2016 bis
31.10.2016).
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Abbildung 4 Unflexibler Lastverbrauch eines Haushalts an einem Tag (22.10.2016).
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Solche Messungen, die Gber den Zeitraum von einem Jahr oder mehr gesammelt werden,
reichen in der Regel aus, um ein Prognosemodell zu erstellen. Ein solches Prognosemodell
wird verwendet, um Prognosen der Last flir den ndchsten Kalendertag zu erstellen, die es
uns dann ermoglichen, die Flexibilitdtsnutzung zu optimieren.

4.2 Methodik

In diesem Unterabschnitt beschreiben wir im Detail die wichtigsten Methoden, die zur Vor-
hersage der unflexiblen Lasten verwendet werden. Unter unflexiblen Lasten verstehen wir
alle elektrischen Lasten auBer der Last der steuerbaren Komponenten (Warmepumpe, Boi-
ler, Elektroauto). Unser Hauptaugenmerk liegt auf der Entwicklung von Prognosemetho-
den, die a) rechentechnisch effizient (ermdglicht eine Ad-hoc-Berechnung der Prognosen
auch in Echtzeit) und b) zuverlassig in Bezug auf die abgeleiteten Prognosen sind. Zu die-
sem Zweck haben wir die folgenden wichtigsten Methoden untersucht:

a) Persistenzmodelle
b) Auto-Regressive (AR)-basierte Modelle

c) Kombinationen von Persistenz und Auto-Regressive (AR)-basierten
Modellen

d) Feature-Extraktionsmodell
e) Holt-Winters Modell
f) SARIMA Modell

Die erste Klasse von Modellen (Persistenzmodelle) verwendet das zuletzt beobachtete Ver-
halten Uber einen Zeitraum der letzten Tage. Einfach gesagt, Persistenzmodelle versuchen,
das beobachtete Verhalten liber mehrere (letzte) Tage zu erfassen. Die zweite Klasse von
Modellen (Auto-Regressive-basierte Modelle) verwendet das zuletzt beobachtete Verhalten
wahrend des aktuellen Tages (der letzten Stunden), um eine Vorhersage flr die nachsten
Stunden zu erstellen. Kurz gesagt, Auto-Regressive-basierte Modelle erfassen zeitliche Ab-
hangigkeiten von zuvor beobachtetem Verhalten innerhalb eines Tages. Informell kénnen
wir sagen, dass Persistenzmodelle versuchen, niedrige Frequenzen in den Profilen der
nicht-flexiblen Last zu erfassen, wahrend Auto-Regressive-basierte Modelle versuchen, hé-
here Frequenzen in den Profilen der nicht-flexiblen Last zu erfassen.

Eine wichtige Beobachtung bei der Untersuchung dieser Methoden ist, dass eine Kombina-
tion der beiden Methoden (a) und (b) genauere Vorhersagen uber die unflexiblen Lasten
liefern sollte. Wir mdéchten sowohl die nieder- als auch die hochfrequenten Phanomene
erfassen, die auftreten kénnen. Diese Notwendigkeit wird auch dadurch begriindet, dass
der groBe Zeithorizont der angeforderten Prognosen (in der Regel 1 Tag im Voraus) zu-
satzliche Herausforderungen (z.B. seltene Ereignisse) mit sich bringt, die mit keiner der
beiden Methoden allein erfasst werden kénnen. Wir untersuchen die Kombination der bei-
den Modelle in der Modellkategorie (c).

Diese Idee (der Kombination alternativer Modelle und Faktoren innerhalb eines einzigen
Modells) wurde in der Modellkategorie (d) weiter genutzt; diese versucht, eine gréBere
Anzahl von Merkmalen (d.h. eine gréBere Variation von nieder- und hochfrequenten Per-
sistenz Faktoren) zu integrieren und optimal unter ihnen auszuwéahlen. SchlieBlich stellen
die letzten beiden Modellkategorien (e) und (f) zwei eher standardisierte Ansatze dar, nam-
lich die Holt-Winters und die SARIMA-Prognosemodelle.

Unser Ziel ist es, einen Vergleich zwischen dieser groBen Sammlung von Modellen durch-
zuftihren und den Unterschied zwischen den Modellen (c) und (d) zu identifizieren, die
speziell auf die Lastprognose zugeschnitten sind, im Vergleich zu generischen Black-Box-
Modellen, wie den Modellen (e) und (f). In den folgenden Unterabschnitten stellen wir die
Details der oben genannten Methoden vor.
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4.2.1 Persistenzmodelle (Ycopy-last-days”)

Persistenz-Prognosemodelle werden in der Regel verwendet, um Referenzmodelle (Base-
line) zu erstellen, die dann fir Vergleichstests verwendet werden kénnen. In vielen Fallen
ist es von Vorteil zu wissen, ob ein entwickeltes Prognosemodell bessere Vorhersagen lie-
fern kann als ein solches Referenz- oder Basismodell. Persistenzmodelle gehdren zu den
"trivialsten" und basieren auf dem Prinzip, dass "die Dinge gleich bleiben", d.h. die Prog-
nose ist immer gleich dem letzten bekannten Datenpunkt.

GemaB Referenz (Notton & Voyant, 2018) wiirde ein Persistenzmodell davon ausgehen,
dass die (unflexible) Last zum Zeitpunkt t + 1 gleich der Last zum Zeitpunkt t ist. Wie genau
sollten jedoch die Zeitinstanzen t + 1 und ¢t definiert sein? Bei der (unflexiblen) Lastprog-
nose mussen wir eine Lastprognose Uber 24 Stunden im Voraus (d.h. tber den nachsten
Tag) erstellen. Natirlich wiirde in diesem Zusammenhang ein Persistenzmodell, das davon
ausgeht, dass die Last am nachsten Tag konstant bleibt und dem aktuellen entspricht,
héchstwahrscheinlich die zeitlichen Schwankungen im Lastprofil nicht gut vorhersagen
kdénnen. Stattdessen ware ein Persistenzmodell genauer, wenn es davon ausgeht, dass die
(unflexible) Last zur Zeit t des Tages d + 1 (kurz (t,d + 1)) gleich wie die Last zur gleichen
Zeit t des Vortages oder des Vortages d ware. Eine zusatzliche Variation dieses Modells
wirde auch mehr als einen Vortag bericksichtigen (z.B. den durchschnittlichen Verbrauch
zur gleichen Zeit an N Vortagen).

Zu diesem Zweck werden wir in der kommenden Evaluierung ein Persistenzmodell betrach-
ten, das N letzte gleiche Wochentage verwendet. Wenn wir beispielsweise Prognosen flr
den nachsten Tag erstellen missen, und dieser Tag ist ein Montag, dann entspricht diese
Prognose dem durchschnittlichen Lastverbrauch der letzten N Montage zur gleichen Zeit.
Wir werden die Abklirzung CLD verwenden, die fir "copy-last-days" steht, um auf diese
Modelle zu verweisen.

Formal gesehen bezeichnet [,(t) die (unflexible) Last eines Haushalts zum Zeitpunkt ¢t am
Tag d. Dann geht das 1-Tages-Persistenzmodell davon aus, dass

M () = lg_1 ()
Analog dazu kénnen wir das N-Tages-Persistenzmodell wie folgt definieren:

1 d-1
O =5 Y h®
i=d-N

Mit anderen Worten, das N-Tages-Persistenzmodell nimmt die durchschnittliche Last von
N Vortagen zur gleichen Zeit. Da die Stromlast jedoch stark mit der Anwesenheit der Men-
schen in einem Haushalt (d.h. mit dem Tagesablauf der Menschen) korreliert, kénnen wir
das oben genannte N-Tages-Persistenzmodell weiter verbessern, indem wir nur die N vor-
herigen gleichen Tage beriicksichtigen. Wenn d + 1 also einem "Montag" entspricht, dann
muissen wir, um unsere Prognose flr den Zeitpunkt t zu erstellen, die durchschnittliche
Last zur gleichen Zeit an den letzten N vorhergehenden Montagen errechnen. Wir bezeich-
nen dieses Modell als das N-Gleiche-Tage-Persistenzmodell, nach dem die Prognosen wie
folgt berechnet werden

da-7

1

g = L;(®)
N

=|

i=d-7
4.2.2 Auto-Regressive (AR)-basierte Modelle

Wie wir im vorherigen Unterabschnitt gesehen haben, versuchen die diskutierten Persis-
tenzmodelle, zeitliche Abhdngigkeiten zu erfassen, deren Haufigkeit sich GUber mehrere
Tage oder Wochen erstreckt (z.B. aufgrund von Ahnlichkeiten im Tagesablauf der Bewoh-
ner an denselben Tagen). Wir werden solche Abhangigkeiten als niederfrequente zeitliche
Abhangigkeiten bezeichnen.
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Es kann aber auch zeitliche Abhangigkeiten der Stromlast innerhalb desselben Tages ge-
ben. Es ist demnach sehr wahrscheinlich, dass die zur Tageszeit t gemessene Last von der
zur vorherigen Zeitinstanz t — 1 desselben Tages gemessenen Last abhangt, vor allem
wenn das Zeitintervall zwischen diesen beiden Zeitinstanzen eher klein ist (hierbei gehen
wir von Zeitintervallen von 15min aus). Wir werden solche zeitlichen Abhangigkeiten der
unflexiblen Last als hochfrequente zeitliche Abhangigkeiten bezeichnen.

Mit Hilfe von Auto-Regressive (AR) Prognosemodellen kdnnen solche (hochfrequenten)
zeitlichen Abhdngigkeiten der Last innerhalb eines Kalendertages erfasst werden. Das
wahrscheinlich einfachste derartige Modell ist das Auto-Regressive Modell (kurz AR-
Modell), nach dem die Vorhersage der Last zum Zeitpunkt ¢ + 1 durch eine lineare Kombi-
nation der Last zu friheren Zeitpunkten gegeben ist. Es gilt also:

[4R(6) = aly(t — 1) + aply(t — 2) + -+ aply(t —n)

(das sich aus einem Maximum-a-posteriori Pradiktor eines urspringlichen WeiBrausch-
Stérprozesses ergibt, vgl. (Ljung, 1999), Kapitel 4).

Falls wir Vorhersagen Uber mehrere Zeitinstanzen im Voraus (in der Regel einen Tag im
Voraus) erstellen méchten, dann kénnen wir eine Variation des obigen Modells implemen-
tieren, die in der Regel als Pseudo-Regressionsmodell bezeichnet wird und die folgende
Form annimmt:

[4R(t|ay, ..., ay) = a l4R(t — 1) + a, 4R (t — 2) + - + a, 4R (t — n)

Mit anderen Worten, wenn die unflexible Last zum Zeitpunkt t —j, j = 1, ...,n, nicht bekannt
ist, wird sie durch die fir diesen Zeitpunkt verfligbare Vorhersage ersetzt.

Beachten Sie, dass alternative Auto-Regressive Modelle definiert werden kénnen. Bei-
spielsweise werden haufig Modelle verwendet, die auch Moving-Average (MA) Rausch-
Terme enthalten. Solche Moving-Average Terme kdnnen verwendet werden, um die Aus-
wirkungen niederfrequenten Rauschens im Profil zu erfassen. Unsere Untersuchung zeigt
jedoch, dass der Gewinn an Vorhersagegenauigkeit durch das Hinzufligen solcher Terme
vernachlassigbar ist.

Einer der Hauptnachteile solcher Methoden ist die Tatsache, dass sie eher flir kurzfristige
Zukunftsprognosen (im Bereich von wenigen Stunden) geeignet sind. Tatsachlich ist es
einfach zu erkennen, dass sich selbst kleine Prognosefehler in den kurzfristigen Zukunfts-
prognosen unvorhersehbar ausbreiten kénnen, wenn man langfristige Zukunftsprognosen
formuliert, die sich Uber einen Tag im Voraus erstrecken. Aus diesem Grund stellen wir im
nachsten Unterabschnitt eine Kombination aus dem im vorherigen Abschnitt beschriebenen
N-Gleiche-Tage-Persistenzmodell und dem oben beschriebenen AR-basierten Modell vor.

4.2.3 Kombinierte Auto-Regressive (AR)- und Persistenz-Modelle

Wie bereits erwahnt kédnnen die Persistenzmodelle niederfrequente zeitliche Abhangigkei-
ten im Lastprofil (iber mehrere Tage oder Wochen) erfassen, wahrend Auto-Regressive-
Modelle dies fir hochfrequente zeitliche Abhdngigkeiten (innerhalb desselben Kalenderta-
ges) kdnnen. Darlber hinaus funktionieren Auto-Regressive-Modelle nur innerhalb eines
kurzfristigen Zeithorizonts gut. Zu diesem Zweck mdchten wir in diesem Unterabschnitt
auch die Méglichkeit einer optimalen Kombination der beiden Modelltypen berlicksichtigen.
Im Prinzip passt diese Idee gut zu den in (Cesa-Bianchi & Lugosi, 2006) diskutierten ex-
pertenbasierten Prognosemethoden und Transfer-Lernmethoden wie (Grubinger |,
Chasparis, & Natschlaeger, 2017).

Kurz gesagt setzt solch eine optimale Kombination der beiden Prognoseverfahren eine
kombinierte Vorhersage der folgenden Form voraus:

[4R(t)ay, .., @y, by) = ail4R(t — 1) + apl4R (t — 2) + -+ + a, 4R (t — n) + by lEM(t)

In diesem Fall méchten wir eine neue Menge von Gewichten qy,a,, ..., a,, b, berechnen, die
die optimale Kombination aus den hochfrequenten zeitlichen Abhangigkeiten (erfasst durch

FLEX"
Deliverable D7 | Beschreibung der Forecasts und Flexibilitdtspotentiale fir jeden Use Case und fiir jede Techno-
logie sowie unter Berlicksichtigung der Eigeninteressen 15



die auto-regressiven Terme) und den niederfrequenten zeitlichen oder saisonalen Abhan-
gigkeiten (erfasst durch den abschlieBenden Persistenzterm) finden.

4.2.4 Training und Implementierung von Auto-Regressive (AR)-basierten Mo-
dellen

In diesem Unterabschnitt mdchten wir auf weitere Details zur Formulierung der erforderli-
chen unflexiblen Lastprognosen (flir den nachsten Tag) sowie zum Trainieren dieser Mo-
delle eingehen.

Nehmen wir an, wir haben den unflexiblen Lastverbrauch eines Haushalts liber die Dauer
von d — 1 > 0 Tagen gemessen und Messungen in Intervallen von jeweils 15min gesammelt.
Infolgedessen verfligen wir an jedem dieser Tage Uber 96 sequentielle Lastmessungen.
Jede dieser Messungen zum Zeitpunkt t stellt den Lastverbrauch wahrend des letzten
15min Intervalls dar. Anhand der verfiigbaren Messungen (ber alle vorangegangenen d —
1 Tage moéchten wir den Lastverbrauch Gber den nachsten Tag d vorhersagen. Schematisch
ist dies in der folgenden Abbildung 5 dargestelit.

Historical Data 1-day Forecast
<€ >

Load

'y e Y
v A4 v

d-2 d-1 d

Abbildung 5 Schematische Lastprognose unflexibler Verbraucher fir den nachsten Tag.

Im Falle des Persistenzmodells von Abschnitt 4.2.1 berechnen wir fir jedes der 15min
Intervalle des nachsten Tages einfach den Durchschnitt des Lastverbrauchs des gleichen
Intervalls an den N gleichen Vortagen.

Im Falle eines AR-basierten Modells miissen wir zunachst die optimalen Parameter (oder
Gewichte) des Modells berechnen. Die optimale Berechnung dieser Gewichte wird als Re-
gressionsproblem der folgenden Form formuliert:

T=96(d—1)
. PP 2
min § ATt I4R (tlay, ..., an) — 14 (0)|
ai,az,...an
t=1

Es minimiert den Vorhersagefehler Gber alle vorangegangenen Zeitintervalle. Der Parame-
ter 1 entspricht einem Gewichtsfaktor, der den aktuellen Messungen mehr Gewicht verleiht
(wodurch wir auch saisonale Abhangigkeiten des Lastverbrauchs erfassen kénnen). In die-
ser Implementierung setzen wir ihn auf 1 =0.999. Aus berechnungstechnischen Griinden
I6sen wir das Problem der linearen Regression mit einer Recursive-Least-Squares (RLS)
Implementierung (vgl. Abschnitt 12.3 von (Sayed, 2003)).

4.2.5 Feature-Extraktionsmodell

Eine der Schlussfolgerungen aus der Kombination der von uns in Abschnitt 4.2.3 beschrie-
benen Auto-Regressive und Persistenzmodelle ist die Tatsache, dass es in historischen Da-
ten (Vortage) Informationen gibt, welche die Prognosegenauigkeit signifikant erhéhen kén-
nen. Zu diesem Zweck beschreiben wir in diesem Abschnitt eine weitere Variante von Auto-
Regressive und Persistenzmodellen, die versuchen, diese historischen Merkmale besser zu
verfolgen. Wir nennen dieses Modell Feature-Extraktionsmodell, da es mehrere historische
Persistenzmerkmale kombiniert und versucht, ihre optimale relative Bedeutung zu finden.

Wir formulieren dieses Prognosemodell als Regressionsproblem und versuchen, die rellative
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Bedeutung fir die Lastprognose zu verstehen. Die Regressionsparameter werden nach dem
in Abschnitt 4.2.4 vorgestellten Algorithmus der Recursive Least Squares trainiert. Die be-
trachteten Merkmalskategorien sind in der folgenden Tabelle 1 dargestellt.

Tabelle 1 Feature-Kategorien im Feature-Extraktionsmodell

RA Rollender Mittelwert der unflexiblen Last wdhrend des vorherigen
Stundenfensters (vier 15-Minuten-Intervalle).

d Werktag oder Wochenende, d [0, 1]

Lh Gesamtlast innerhalb des aktuellen Stundenintervalls. Das Stundenin-
tervall ist definiert als der Stundenzeitstempel des aktuellen 15min In-
tervalls.

Ld Anteil der Last des aktuellen 15min Intervalls, im Vergleich zur mittle-
ren Last des Tages.

DLh Differenz in der Last innerhalb der vorherigen Stunde.

LC Erkennung von niedrigem Verbrauch, wenn Ld < 0.2.

PC Erkennung von Spitzenverbrauch, wenn Ld > 1.5.

Die genauen Merkmale, die als Regressoren verwendet werden, sind in der folgenden
Tabelle 2 dargestellt. Beachten Sie, dass wir flr alle Merkmalskategorien mit Ausnahme
des Tagesindexes das entsprechende Merkmal vom Vortag und vom gleichen Tag in der

Vorwoche verwenden.

Tabelle 2 Merkmale, die im Feature-Extraktionsmodell als Regressoren betrachtet werden und zu-
geordnete Gewichte.

Day LOAD RA d Lh Ld DLh LC PC
Target - - Wa - - - - -
X
X-1 Wo W2 - W5s w7 Wo Wit W13
X-7 Wi w3 - We Ws W10 W12 W14

Wir erwarten, dass dieses Modell Abhéngigkeiten erfasst, die auch im Persistenzmodell und
in den Auto-Regressive Modellen vorhanden sind. Es versucht jedoch auch, den Gesamt-
verbrauch, der am Vortag/Woche aufgetreten ist, sowie das durchschnittliche Verhalten in
der letzten Stunde zu verfolgen. In gewisser Weise kénnen wir argumentieren, dass ein
solches Modell reichhaltiger ist als die Kombination aus Auto-Regressive- und Persistenz-
modell, die in Abschnitt 4.2.3 vorgestellt wird.

4.2.6 Holt-Winters Modell

Das Holt-Winters Prognosemodell ist in der Prognoseliteratur gut bekannt, vgl. (Szmit,
Szmit, Slawomir, & Bugala, 2012). Es zerlegt den vorhergesagten Parameter in drei Kom-
ponenten, namlich eine Niveaukomponente, eine (hochfrequente) Trendkomponente und
eine (niederfrequente) Saisonkomponente. Wir kédnnen argumentieren, dass es Elemente
der in den vorangegangenen Abschnitten vorgestellten Modelle umfasst. So erfasst bei-
spielsweise die Trendkomponente zeitliche Abhangigkeiten, die auch in den Auto-Regres-
sive (AR)-basierten Modellen vorhanden sind, wahrend die saisonale Komponente nieder-
frequente Abhdngigkeiten erfasst, die auch in den Persistenzmodellen vorhanden sind. Die
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Details zu diesem Modell finden Sie in der obigen Referenz sowie weiter hinten in Abschnitt
5.2.3. Wir verwenden dieses Modell, um die Leistung der abgeleiteten Auto-Regressive und
persistenzbasierten Prognosemodelle, die in den Abschnitten 4.2.3 und 4.2.5 entwickelt
wurden, besser bewerten zu kénnen.

4.2.7 SARIMA Modell

Das ARIMA-Modell (Auto Regressive Integrated Moving Average) ist eine der gangigsten
Methoden zur Analyse und Prognose von Zeitreihen. Es handelt sich um eine Erweiterung
der ARMA-Modelle flr nicht-stationdre Zeitreihen, die stationar gemacht werden kénnen,
indem Unterschiede einer bestimmten Ordnung von der urspriinglichen Zeitreihe - inte-
grierte oder differenzstationare Zeitreihen - Gbernommen werden.

ARIMA verwendet Hauptparameter (p,d,q), die als ganze Zahlen ausgedriickt werden.
Diese drei Parameter beriicksichtigen zusammen Saisonalitat (Periodizitat), Tendenz und
Rauschen in den Datensatzen:

e p ist die auto-regressive Ordnung, die es ermdglicht, frihere Werte
der Zeitreihe zu bericksichtigen.

e d ist die Reihenfolge der Integration, die es ermdglicht, friihere Un-
terschiede der Zeitreihe zu bertiicksichtigen,

e g ist die Reihenfolge des gleitenden Mittelwerts, die es ermdglicht,
den Modellfehler als lineare Kombination von zuvor beobachteten
Fehlerwerten einzustellen.

Der Hauptnachteil dieses Modells ist, dass es keine saisonalen Zeitreihen unterstitzt, was
es unmdglich macht, damit Zeitreihen des Energieverbrauchs vorherzusagen, die durch
starke Periodizitét gekennzeichnet sind, wie z.B. Tages- oder Wochenzeiten.

Eine Variation des ARIMA-Modells, namlich SARIMA, kann stattdessen verwendet werden,
um auch die Periodizitat zu verfolgen. In diesem Modell sind die Parameter (p,d,q) die
nicht-saisonalen Parameter, die wie oben beschrieben gleich bleiben. Zusatzlich zu diesen
Parametern stellen wir auch Parameter (P,D, Q) vor, die éhnlich wie (p,d, q) definiert sind,
aber stattdessen flr die saisonale Komponente der Zeitreihe gelten. SchlieBlich beschreibt
der Parameter S den Zeitraum der Saison in der Zeitreihe (96, wenn die Periode einem Tag
entspricht, 7x96, wenn die Periode einer Woche entspricht, etc., wobei 96 sich auf die
Granularitat der Sensordaten innerhalb eines Tages bezieht). Ahnlich wie das Holt-Winters-
Modell ist dies auch ein Black-Box-Modell, das auch die saisonalen Effekte erfasst und ver-
wendet wird, um die Leistung der abgeleiteten, Auto-Regressive Prognosemodelle besser
zu bewerten. Weitere Informationen zu diesem Modell finden Sie auch im Abschnitt 5.2.4
weiter unten.

4.3 Ergebnisse

In diesem Unterabschnitt stellen wir die Ergebnisse der betrachteten Prognosemethoden
fur die unflexiblen Lasten in Wohngebauden vor. Insbesondere stellen wir die Leistungsfa-
higkeit des Persistenzmodells (Abschnitt 4.2.1), der Kombination aus Persistenzmodell und
Auto-Regressive Modell (Abschnitt 4.2.3), des Feature-Extraktionsmodells (Abschnitt
4.2.5), des Holt-Winters-Modells (Abschnitt 4.2.6) und des SARIMA-Modells (Abschnitt
4.2.7) vor. Die Auswertung aller Modelle erfolgt in Bezug auf den Root-Mean-Square-Error
(RMSE).

4.3.1 Persistenzmodelle (Ycopy-last-days”)

In diesem Abschnitt stellen wir die Prognoseperformance des Persistenz-Prognosemodells
vor (kurz "Copy-last-days"), wobei wir die letzten N=3 gleichen Tage verwenden. In Ab-
bildung 6 und Abbildung 7 demonstrieren wir die One-Day-Ahead-Prognose des Persistenz-
modells und der tatsachlichen unflexiblen Last Giber die Dauer von einem Monat bzw. einem
Tag.
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E_load + Forecast «
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2016-10-06 15:45:00
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Abbildung 6 Persistenzmodell ("Copy-last-days") mit N=3 letzten (gleichen) Tagen, die Uber einen
Monat ausgewertet wurden (vom 01.10.2016 bis 31.10.2016). Der resultierende RMSE=189. Wir
verwenden die Abklrzung CLD zur Bezeichnung des "copy-last-days"-Persistenzmodells.

E_load + Ferecast »
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Abbildung 7 Persistenzmodell ("Copy-last-days") mit N=3, das Uber einen Tag (22.10.2016) aus-
gewertet wurde. Der resultierende RMSE=153.
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4.3.2 Kombinationen von Persistenz (“copy-last-days”) und Auto-Regressive
(AR)-basierten Modellen

In diesem Abschnitt stellen wir die Vorhersageleistung des kombinierten auto-regressiven
(AR) und Persistenzmodells ("copy-last-days") vor. Wie bereits beschrieben, versucht ein
solches kombiniertes Modell die Persistenz im Lastprofil durch dhnliche Tage (Persistenz-

komponente) und zeitliche Effekte innerhalb desselben Tages (AR-Komponente) zu erfas-
sen.

Die folgende Abbildung 8 zeigt die Reaktion dieses kombinierten Modells Gber den Zeitraum
von einem Monat, wahrend die Abbildung 9 die entsprechende Reaktion Uber den Zeitraum
von einem Tag darstellt.

E_load + Forecast «
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= Load: 875
= Forecasting AR&RLS: 500

Wh

+ L\ v b - ] b e AW vl [ \ | L N 1
101 10/4 10/7 10/10 10/13 10116 1019 10/22 10/25 10/28 10/30
== Load == Forecasting AR&RLS

100 [ |

50 ‘
| | ] '

0
101 10/4 1077 10110 10/13 10/16 10119 10/22 10/25 10/28 10/30
= Load Feature Extraction RMSE

non

Abbildung 8 Kombiniertes AR mit Persistenzmodell ("Copy-last-days") mit N=3 letzten (gleichen)
Tagen, die Uber einen Monat ausgewertet wurden (vom 01.10.2016 bis 31.10.2016). Der resultie-
rende RMSE=159.

E_load + Forecast

2016-10-22 16:30:00

— Load, 592
— Forecasting ARERLS: 511

Wh
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= Loag == Forecasting ARERLS

Abbildung 9 Kombiniertes AR mit Persistenzmodell ("Copy-last-days") mit N=3 letzten (gleichen)
Tagen, die Uber einen Tag (22.10.2016) ausgewertet wurden. Der resultierende RMSE=174.
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Es ist offensichtlich (durch direkten Vergleich mit dem Persistenzmodell), dass die Leis-
tungsfahigkeit des kombinierten Modells Gber einen Monat jene des Persistenzmodells um
etwa 15% Ubertroffen hat, was zeigt, dass zeitliche Abhangigkeiten innerhalb desselben
Tages die Lastprognose signifikant beeinflussen.

4.3.3 Holt-Winters Modell

In diesem Abschnitt beschreiben wir die Leistung des in Abschnitt 4.2.6 kurz vorgestellten
Holt-Winters-Prognosemodells. In der Auswertung haben wir die Periode entweder als 1
Woche oder als 1 Tag definiert. Da diese saisonale Periodizitat vorgegeben und benutzer-
definiert ist, ist diese Methode sehr empfindlich gegeniiber dem fiir die Auswertung ver-
wendeten Datensatz (da die Periodizitat im Verhalten der Bewohner zwischen den Haus-
halten stark variieren kann).

Insbesondere in Abbildung 10 und Abbildung 11 stellen wir die Leistung dieses Modells
Uber den Zeitraum von einem Monat bzw. einem Tag dar, bei einer saisonalen Komponente
von 1 Woche.

E_load + Forecast =

2016-10-06 15:00:00
= Load:
Forecasting HW:  1.013K

Load forecast RMSE

iy R |
1 FTIJ(L ‘ tJrﬂij _W JJ {_

Abbildung 10 Holt-Winters Auswertung Uber einen Monat (vom 01.10.2016 bis 31.10.2016) flr
eine saisonale Komponente von 1 Woche. Der resultierende RMSE=288.
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Abbildung 11 Holt-Winters Auswertung Uber einen Tag (22.10.2016) flir eine saisonale Komponente
von 1 Woche. Der resultierende RMSE=305.

AuBerdem stellen wir in Abbildung 12 und Abbildung 13 die Leistungsfahigkeit dieses Mo-
dells Gber den Zeitraum von einem Monat bzw. einem Tag bei einer Periodizitat von 1 Tag
dar. Insgesamt konnten wir eine Verbesserung der Leistung feststellen, wenn die saisonale
Komponente auf der Grundlage eines Tages definiert wurde, was jedoch sehr spezifisch flr
den fir diese Auswertung verwendeten Datensatz sein kénnte.

10/15

Load forecast RMSE ~

2016-10-02 18:00:00

00 = Load HW RMSE: 620

non

101 103 1075 107 10/ 10111 10113 10115 1017 10719 1021 10723 10/25 1027 10120 10/30
— Load Hw RMSE

Abbildung 12 Holt-Winters Auswertung Uber einen Monat (vom 01.10.2016 bis 31.10.2016) und
flr eine saisonale Komponente von 1 Tag. Der resultierende RMSE=271.
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Abbildung 13 Holt-Winters Auswertung Uber einen Tag (22.10.2016) und fir eine saisonale Kom-
ponente von 1 Tag. Der resultierende RMSE=366.

4.3.4 SARIMA Modell

Die Leistung des SARIMA-Modells Gber einen Zeitraum von einem Monat ist in Abbildung
14 und flr einen Tag in Abbildung 15 zu sehen. Beachten Sie, dass die Performance des
SARIMA-Modells besser ist als die entsprechende Performance der Holt-Winters-Modelle
und fast identisch mit dem Persistenzmodell.
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= data E_load_forecast_SARIMA3_RMSE_Wh

Abbildung 14 SARIMA-Modell vom Typ (1,1,1)(1,1,1)96 mit einer Auswertung Uber einen Monat
(vom 01.10.2016 bis 31.10.2016). Der resultierende RMSE=163.
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Abbildung 15 SARIMA-Modell vom Typ (1,1,1)(1,1,1)96 mit einer Auswertung Uber einen Tag
(22.10.2016). Der resultierende RMSE=211.

4.3.5 Feature-Extraktionsmodell

Die Leistung der Feature-Extraktionsmethode (iber einen Zeitraum von einem Monat und
einem Tag ist in Abbildung 16 und Abbildung 17 dargestellt. Wir haben festgestellt, dass
die Feature-Extraktionsmethode Ahnlichkeiten mit friiheren Perioden (d.h. saisonale Ef-
fekte) besser erfassen kann als das kombinierte Auto-Regressive- und Persistenzmodell.
Der daraus resultierende Prognosefehler (RMSE) wurde um 50% reduziert.

E_load + Forecast
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Abbildung 16 Feature-Extraktionsmethode Uber einen Monat (vom 01.10.2016 bis 31.10.2016).
Der resultierende RMSE=82.
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Abbildung 17 Feature-Extraktionsmethode mit einer Auswertung Uber einen Tag (22.10.2016). Der
resultierende RMSE=103.

4.3.6 Gesamtleistungsvergleiche

In der folgenden Tabelle 3 haben wir die resultierenden RMSE-Ergebnisse aller Methoden
Uber die Dauer von 1 Tag und 1 Monat zusammengefasst. Im Allgemeinen beobachten wir,
dass die Feature-Extraktionsmethode, die mehrere Persistenz-Features (die fir die Last-
prognose sehr spezifisch sind) kombiniert, alle anderen Methoden Ubertrifft.

Tabelle 3 RMSE-Vergleich der untersuchten Lastprognosemethoden.

Duration RMSE (1 day) RMSE (1 month)
Persistenz 153 189
Holt-Winters 305 288
AR+Persistenz 174 159
SARIMA 211 163
Feature Extraktion 103 82
FLEx
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5 Warmwassernutzung

5.1 Datenbeschreibung und —aufbereitung

Die Datenbasis flir die Erstellung der Warmwassernutzungsprognosen sind 20 Smart-Boi-
ler, die bei Kunden der TIWAG verbaut sind und ca. seit Marz 2019 Daten liefern. Der
integrierte Hardware-Controller in den elektrischen Warmwasserspeichern liefert mehrmals
pro Minute Werte von Temperatursensoren, die an unterschiedlichen Stellen im Speicher
angebracht sind. Daraus wird mit einer speziellen Berechnungsmethode der aktuelle Ener-
giegehalt (=Kapazitat) des Wassers im Boiler berechnet (in kWh). Weiters liefert der Con-
troller die momentane elektrische Leistungsaufnahme. Leider ist kein Durchflusssensor
verbaut, um die Menge von Warmwasserzapfungen zu ermitteln, weshalb eine alternative
Approximation mit Hilfe der Anderung der Kapazitat angestrebt wurde. Die verfiigbaren
Daten wurden exportiert und in folgender Aufbereitungs-Pipeline durchlaufen, um entspre-
chend bereinigte und vorberechnete Daten fiir die Prognosemodelle zu erhalten.

Warmwasserver Hinzuftgen
brauch Spalte "Anzahl
berechnen Bewohner"

Eingabe CSV-
Datei

Gruppieren Resampling auf Fehlende Werte
nach Gerate-ID Stundenwerte befillen

Entfernen von Differenzieren Ausgabe CSV-
AusreiBern der Kapazitat Datei

Abbildung 18 Die Schritte der Datenaufbereitung dienen zum Erstellen von passenden Eingabe-
Daten filr die Prognosemodelle.

Folgende Spalten sind in der Input-Datei enthalten: Die Gerate-ID, der UTC-Zeitstempel
der Messung, elektr. Leistung in kW und Energieinhalt in kWh. Es wurde entschieden die
Warmwasserzapfungen in einer Aufldsung von einer Stunde zu berechnen, da héhere Auf-
I6sungen (z.B. 15 Minuten) schlechte Ergebnisse und viel langere Laufzeiten in ersten Ex-
perimenten zeigten. Als Beispiel daflir kann genannt werden, dass es wahrscheinlicher ist,
dass eine morgendliche Dusche in derselben Stunde passiert als im selben 15 Minuten-
Block. Der wichtigste Schritt in der Pipeline ist natlrlich den Warmwasserverbrauch zu
berechnen. Dazu wurde der Warmwasserspeicher als offenes thermodynamisches System
modelliert, dem Energie Uber die elektrische Arbeit des Heizstabes und das einflieBende
Wasser zugeflihrt, und Energie lber Zapfungen und Verlustleistung genommen wird.

Qinlet

Qloss

Electric Water Heater

Qconsumption W

H/electric

Abbildung 19 Der Boiler modelliert als offenes thermodynamisches System.
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Der erste Hauptsatz der Thermodynamik besagt, dass keine Energie in einem thermody-
namischen System verloren gehen kann. Wir erstellen eine vereinfachte Form der Ener-
giebilanz mit folgender Gleichung:

AQheater = electric + Qinlet - Qconsumption - Qloss

Die Anderung der internen Energiemenge ist bekannt, ebenso die elektrische Arbeit. Der
Energie-Verlust, der trotz guter Isolierung entsteht, wurde empirisch ermittelt und mit
dem Datenblatt des Boilers abgeglichen und betragt ca. 0,05 kWh pro Stunde. Die Ener-
gie des zuflieBenden Wassers kann mit 0 angesetzt werden, da fir die Berechnung der
Energiemenge im Boiler die Leitungswassertemperatur der Bezugspunkt ist.

Daraus ergibt sich die folgende Gleichung zur Berechnung des approximierten Warmwas-
serverbrauchs:

Qconsumption = max (0' Welectric - AQheater - Qloss)

Um sicher zu gehen, dass keine negativen Werte flr den Verbrauch entstehen im Falle
eines Messfehlers bzw. durch die Annaherung, wird der Wertebereich auf nicht-negativ
eingeschrankt. Abbildung 20 zeigt die berechneten Warmwasserverbrauch (in Form von
Energie) von zwei unterschiedlichen Haushalten.

Consumption [kWh]

Aug 2 Aug 5 Aug 8 Aug 11 Aug 14 Aug 17 Aug 20 Aug 23
2019

Consumption [kWh]

Aug 2 Aug 5 Aug 8 Aug 11 Aug 14 Aug 17 Aug 20 Aug 23
2019

Abbildung 20 Beispiele von unregelmaBigem und regelmaBigem Warmwasserverbrauch in zwei
verschiedenen Haushalten

5.2 Methodik

Es wurde angestrebt klassische statistische Prognosemethoden mit einem modernen
kinstlichen neuronalen Netz Ansatz zu vergleichen. Statistische Vorhersagemodelle wer-
den schon sehr lange verwendet, erste ARMA Modelle wurden bereits in den spaten 1930er
Jahren entwickelt und Methoden der exponentiellen Glattung in den 1950ern (Majid & Mir,
2018). Diese beiden linearen Methoden sind laut Hyndman heute noch die am haufigsten
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eingesetzten Modelle fir die Prognose von Zeitreihen (Hyndman & Athanasopoulos, 2018).
Das Problem von linearen Modellen ist die beschrankte Lernfahigkeit von nur linearen Zu-
sammenhangen z.B. zwischen zeitlich versetzten Beobachtungen oder anderen Variablen.
Reale Zeitreihen zeigen oft nichtlineares Verhalten, weshalb auch nichtlineare Modelle oft
besser geeignet sind (Hagan & Behr, 1987). Kinstliche neuronale Netze (ANNs) ermdgli-
chen die Modellierung dieser nichtlinearen Zusammenhdnge und wurden durch die stei-
gende Rechnerleistung und Evolution von GPUs in den letzten 2 Jahrzehnten sehr popular.

Wir entschieden uns zwei statistische Modelle (SARIMA und Exponential Smoothing) mit
einem speziellen Recurrent Neural Network, dem Long Short-Term Memory (LSTM), zu
vergleichen. Der Prognose-Horizont, d.h. der Zeitraum flr den eine Prognose erstellt wird,
wurde mit 48 Stunden festgelegt.

5.2.1 Fehlermetriken

Speziell im Bereich von Prognosen wird die Qualitdt von Modellen meist in Form von Feh-
lermetriken gemessen, die den quantitativen Unterschied zwischen echten (y,) und vor-
hergesagten (9.) Werten ausdriickt. Die Festlegung einer geeigneten Fehlermetrik ist eine
sehr wichtige, aber keineswegs leichte Entscheidung. Eine gute Metrik sollte unverfalscht,
symmetrisch (auBer Asymmetrie ist erwlinscht), universell anwendbar, Skalen-unabhangig
(fur Vergleiche) und einfach zu interpretieren sein. Unzdhlige Fehlermetriken existieren,
welche grob in folgende finf Kategorien eingeteilt werden kénnen (Hyndman & Koehler,
2006):

¢ MaBstabsabhadngige Metriken: Die Skala der Metrik hangt von
der Skala der Daten ab, d.h. Daten mit unterschiedlicher Skalierung
kdnnen nicht miteinander verglichen werden. Beispiele: Mean Abso-
lute Error (MAE), Mean Square Error (MSE), Root Mean Square Error
(RMSE).

¢ Prozentuale Metriken: Der Fehler wird als prozentualer Wert an-
gegeben, d.h. diese Kategorie der Metriken ist skalenunabhangig.
Die bekannteste Metrik aus dieser Klasse ist MAPE (Mean Absolute
Percentage Error). MAPE hat zwei Nachteile: Erstens dlirfen die
Werte der Zeitreihe keine 0-Werte enthalten und zweitens werden
negative Fehler (y, < j,) starker bewertet als positive (=Asymmet-
rie).

¢ Metriken basierend auf relativen Fehlern: Um MaBstabsunab-
hangigkeit zu erreichen werden Fehler von unterschiedlichen Metho-
den in Relation gesetzt. Meist wird flr das zu vergleichende Modell
ein einfaches (naives) Benchmark-Modell verwendet. Beispiel: Mean
Relative Absolute Error (MRAE).

¢ Relative Metriken: Im Unterschied zur oberen Klasse werden hier
nicht die einzelnen Fehler im Verhaltnis betrachtet, sondern zwei
fertig berechnete Metriken. Vorzugsweise ist der Nenner im Verhalt-
nis dieselbe Metrik aber aus Vorhersagen mit dem Benchmark-Mo-
dell (*) berechnet. Bsp: Relative Mean Absolute Error (ReIMAE =
MAE/MAE*),

o Skalierte Metriken: In (Hyndman & Koehler, 2006) werden die
Nachteile von relativen und auf relativen Fehlern basierenden Metri-
ken erdrtert. Deshalb wird die Metrik ,Mean Absolute Scaled Error"
(MASE) vorgeschlagen, um alle Nachteile der anderen Kategorien zu
umgehen. MASE relativiert den MAE der Prognose mit dem ,in-
sample™ MAE der Prognose der naiven Methode (Saisonal-Naiv/Ran-
dom Walk). Sollte die Zeitreihe eine Saisonalitat aufweisen, wird der
Parameter m entsprechend der Periode gesetzt (Saisonal-Naiv), an-
dernfalls wird m = 1 gesetzt, was einem Random-Walk-Modell ent-
spricht.

FLEXT
Deliverable D7 | Beschreibung der Forecasts und Flexibilitdtspotentiale fir jeden Use Case und fiir jede Techno-
logie sowie unter Berlicksichtigung der Eigeninteressen 28



1
MAE N 2t lecl
MAE; B

in—-sample

MASE =
1 gr
T Zt=m+1 1Yt = Ye-ml

Obwohl die Fehlermetriken MSE/RMSE, MAE und MAPE am gebrduchlichsten sind, entschie-
den wir uns fir MASE als Metrik aufgrund seiner nitzlichen Eigenschaften. MAPE konnte
von Anfang an ausgeschlossen werden, da unsere Zeitreihen viele 0-Werte enthalten. Da
wir unterschiedliche Modelle und auch Zapfprofile von 20 verschiedenen Haushalten mit
unterschiedlichstem Zapfverhalten vergleichen, bietet sich MASE sehr gut an. Ein weiterer
Vorteil ist, dass man auf einem Blick erkennt ob das Vorhersagemodell besser als das
Benchmark-Modell ist, namlich wenn MASE < 1 ist.

5.2.2 Zeitreihenanalyse

Zeitreihen kénnen verschiedene Muster bzw. Komponenten aufweisen:

e Trend: Ist der Durchschnitt der Werte einer Zeitreihe nicht konstant
Uber die Zeit, wird von einem Trend gesprochen

e Saisonalitat: Ein saisonales Muster besteht aus Fluktuationen in der
Zeitreihe, die durch bestimmte zeitliche Faktoren (z.B. spezifische
Monate eines Jahres oder die Tageszeit) ausgeldst werden. Saisona-
litaten haben immer eine fixe Frequenz.

e Zyklen: Ein Zyklus beschreibt wiederholte Fluktuationen mit unter-
schiedlicher Frequenz. Zyklen treten haufig in 6konomischen Zeitrei-
hen auf.

Statistische Vorhersagemethoden setzen voraus, dass die Zeitreihen ,stationar" sind, d.h.
dass sich die statistischen Eigenschaften wie Mittelwert und Varianz nicht mit der Zeit én-
dern. Sobald eine Zeitreihe einen Trend oder eine Saisonalitat aufweist, muss entweder
das Modell fur Stationaritat sorgen oder der/die Prognostiker/in zuerst entsprechende
Transformationen auf die Daten anwenden. Eine einfache Méglichkeit Trends und Saisona-
litaten zu entfernen ist das zeitliche Differenzieren von Zeitreihen. Durch den Differenzie-
rungsschritt in der Datenaufbereitung sollten unsere Zeitreihen (Zapfprofile) bereits stati-
onar sein. Sogenannte Unit-Root-Tests, wie z.B. ADF oder KPSS, ermdglichen eine auto-
matisierte Feststellung, ob und wie oft eine Zeitreihe differenziert werden muss, um Sta-
tionaritat zu erhalten.

Eine weitere gute Analysemdglichkeit stellt die sogenannte (partial) Autocorrelation-
Function (ACF) dar. Mit ACF lasst sich der lineare Zusammenhang zwischen Beobachtun-
gen leicht darstellen. Die ACF-Diagramme (auch Korrelogramme) der Zapfprofile zeigen
eine starke Korrelation zu Beobachtungen mit zeitlichem Versatz von 1 bzw. Vielfachen
von 24 (Saisonalitdt mit Periode m=24).
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Abbildung 21 ACF und PACF Diagramme fiir ein regelmaBiges (obere Reihe) und unregelmaBiges

(untere Reihe) Zapfprofil

5.2.3 Exponential Smoothing

Die Methode der exponentiellen Glattung funktioniert mittels gewichteten Mittelwertes von
vorherigen Beobachtungen. Die Gewichtungen verkleinern sich exponentiell je weiter die
Beobachtungen in die Vergangenheit reichen, wobei 0 < a < 1 der Glattungs-Parameter ist.
Das sogenannte ,Simple Exponential Smoothing"™ (SES) lasst sich mit folgenden Gleichun-

gen darstellen:

Vern =1t

ly=ay; + (1 - )l

Sind die Parameter [, und a bekannt, lasst sich die rekursive Formel lésen und eine Vor-
hersage kann berechnet werden. Um diese beiden Parameter zu berechnen muss ein nicht-
lineares Optimierungsproblem durch Minimierung des Sum-of-Squares Fehlers gelést wer-
den (Hyndman & Athanasopoulos, 2018). Holt und Winters haben die SES Methode um
eine Trend- und Saisonalitdtskomponente erweitert zu ,Holt-Winters' additive seasonal

method" (Winters, 1960):

h—1
Vesn = le + hbe + Stpn-m@esy mit k = lT

le = a(ye = Se-m) + (1 — @) (Ye-1 — be—1)

by = B*(ly = li-1) + (1 = )by

Se =YW —lici = b)) + (A= V)Seem
Diese Methode besitzt zwei weitere Glattungs-Parameter g*und y fir den Trend bzw. Sai-

sonalitat.
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5.2.4 SARIMA

SARIMA ist ein Akronym flir ,Seasonal Auto-Regressive Integrated Moving Average".

SARIMA Modelle werden immer durch eine Ordnung (p,d, q)(P, D, Q),, bestimmt, wobei p,
g, P und Q den maximal zu berlicksichtigenden zeitlichen Versatz angeben und d und D
den Grad der Differenzierung und die GroBbuchstaben immer fiir den saisonalen Teil ver-
antwortlich sind.

Um die Notation zu vereinfachen, empfiehlt es sich den sogenannten , Backshift-Opera-
tor" einzufliihren.

B™y = Yim

Die vollstandige Beschreibung eines SARIMA-Modelles kann durch folgende Gleichung er-
folgen:

(1 . ()|B L q-)po) (1 . (I)|Bm L (I)PBmP) (1 . B)d(l . Bm)D g =
- v
AR(p) seasonal AR(P) diff seasonal diff.
c+(1+0B+-+0,B)(1+60,B+ - +00B")e,
ﬂ.[:l’(q) soa:-;unnT)[A(Q)

Der AR-Teil in der Gleichung kann als lineare Regression von versetzten Beobachtungen
und der MA-Teil von versetzten Vorhersagefehlern (weiBes Rauschen = ¢,) gesehen wer-
den. Die Parameter c, ¢, ®,0,0 werden durch Maximum-Likelihood-Estimation bestimmt.

5.2.5 LSTM

Klassische rekurrente neuronale Netzwerke (RNNs) eignen sich sehr gut, um sequenzielle
Daten wie Satze in der Sprachverarbeitung oder Zeitreihen zu lernen. Allerdings haben
RNNs das Problem der verschwindenden oder explodierenden Gradienten bei Langzeit-
Abhangigkeiten. Das Long Short-Term Memory wurde von (Hochreiter & Schmidhuber,
1997) entwickelt, um dieses Problem zu beheben.

Den Kern einer sogenannten LSTM-Zelle bildet der Zustand c;, der als ,,Gedachtnis" fun-
giert. Dieser Zustand wird rickgefiihrt und durch sogenannte ,Gates™ modifiziert. Ein Gate
besteht aus einem einzelnen neuronalen Netz-Layer mit einer Sigmoid-Aktivierungsfunk-
tion, gefolgt von einer elementweisen Multiplikations-Operation ®. Jedes Gate wirkt als
Filter, da jedes Element des Inputs mit einem Faktor zwischen 0 und 1 multipliziert wird.
Ein LSTM hat 3 Gates: Input, Output- und Forget-Gate. Das Input-Gate steuert wieviel von
der aktuellen Information in das ,Gedachtnis" wandert, das Forget-Gate welche Informa-
tion geléscht werden soll, und das Output Gate welche Information vom internen Zustand
an den Ausgang gelangen soll.

® ®

LSTM unit

. — ey —"

Abbildung 22 Die interne Struktur eines LSTMs. Quelle: (Deloche)
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Fir eine detaillierte Beschreibung und Erklarung der Funktionsweise und des Lernverfah-
rens verweisen wir auf den Original-Artikel (Hochreiter & Schmidhuber, 1997) und
(Goodfellow, Bengio, & Courville, 2016).

5.3 Evaluierung

5.3.1 Evaluierungsstrategie

Die typische Vorgehensweise um die Leistung von Vorhersagemodellen zu ermitteln, ist
das aufteilen des Datenbestandes in ein Trainings-Set und ein Test-Set. Die Modell-Para-
meter werden aus den Trainings-Daten ermittelt, wahrend die Fehlermetrik anhand des
auf das Test-Set angewandte Modell berechnet wird, um die Leistungsfahigkeit (=Genera-
lisierungsfahigkeit) des Modells bei noch neuen, ungesehenen Daten zu testen. Der Anteil
des Trainings-Sets von den Gesamtdaten wurde auf 80% festgelegt, die restlichen 20%
flr das Test-Set.

Klassische Kreuzvalidierungsverfahren mit zufalligen Aufteilungen kénnen bei Zeitreihen
nicht angewendet werden, da die chronologische Ordnung der Beobachtungen beibehal-
ten werden muss.

Total dataset

Experiment 1 ‘

Experiment 2 ‘ ‘ ‘ ‘

Experiment 4 ‘ ‘ | ‘

|
|
Experiment 3 ‘ ‘ ‘ | ‘
|
|

Experiment 5 ‘ ‘ ‘

Time

Abbildung 23 Zeitreihen-Kreuzvalidierung mit konstanter Trainings-Set-GréBe und rollendem
Zeitfenster

Bei den statistischen Modellen wurde die Evaluierungs-Variante aus Abbildung 23 Zeitrei-
hen-Kreuzvalidierung mit konstanter Trainings-Set-GréBe und rollendem Zeitfenster mit
nicht Gberlappenden Training-Sets einer Lange von 8 Wochen angewandt. Das Test-Set
enthalt 48 Werte, was einem Zeitraum von 2 Tagen und somit dem Vorhersagezeitraum
entspricht. Diese Strategie wurde flr alle 20 Gerate durchgefihrt und die individuellen
Ergebnisse (MASE-Werte) gemittelt, um ein Gesamtergebnis zu erhalten. Fiir das SARIMA-
Modell wurde weiters eine Rastersuche Uber die Ordnungs-Parameter p, P, g und Q mit
maoglichen Werten 0, 1 und 2 durchgefihrt. Die Ordnung der Differenzierung wurde nach
Ausflihrung von Unit-Root-Tests auf 0 gesetzt. Dadurch konnte eine beste Konfiguration
(2,0,0)(0,0,1)24 gefunden werden.

5 Test set N
Experiment 1 “ ‘ ‘ i
Experiment 2 ‘ ‘ ‘ ‘ ‘
Experiment 3 ‘ ‘ ‘ ‘ ‘
Experiment 4 ‘ ‘ ‘ ‘ ‘
Experiment 5 ‘ ‘ ‘ ‘

| Time

Abbildung 24 Die Zeitreihen-Kreuzvalidierung fir Uberwachtes maschinelles Lernen wird nur auf
das Test-Set angewandt
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Die Evaluierung von Modellen aus der Kategorie ,iberwachtes maschinelles Lernen®, wie
z.B. kinstliche neuronale Netze, unterscheidet sich zur ersten Validierungs-Variante, da
die Modelle mit sehr vielen Input/Output-Paaren aus dem Trainings-Set ,gefittert" werden,
um ein Lernergebnis zu erzielen. Nach dem Lernen werden Daten-Paare aus dem Test-Set
fur die Evaluierung genommen (siehe Abbildung 24).

Im Falle des LSTM-Modells untersuchten wir zwei verschiedene Ansatze:

1. Fir jeden Boiler wurde ein eigenes LSTM-Netz trainiert und evaluiert
und die einzelnen Ergebnisse gemittelt = ,Single-Device Model®
(SD)

2. Nur ein LSTM-Modell wurde mit allen von 20 Geraten verfligbaren
Daten trainiert = ,Multi-Device Model" (MD)

Weiters wurde fir den Input des RNNs ein Zeitraum von 2 Wochen festgelegt, der Zeitraum
des Outputs entspricht wieder dem Prognose-Horizont von 48 Stunden.

In Erwartung auf méglicherweise bessere Ergebnisse wurden dem Modell zusatzliche , Fea-
tures" zum Warmwasserverbrauch zugefihrt:

e Anzahl der Haushaltsmitglieder: Naturlicherweise sollte die Anzahl
der Bewohner eines Haushalts eine groBe Auswirkung auf das Zapf-
profil haben. Leider besteht keine Garantie, dass die verfiigbaren
Daten uber die Bewohneranzahl aktuell und richtig sind.

e Wochentag: Speziell an Wochenenden darf ein anderes Verhalten
erwartet werden.

e Durchschnitt des Verbrauchs der letzten 3 Stunden (MA3): Aufgrund
der ACF Diagramme wurde ermittelt, dass der aktuelle Wert stark
von den letzten 1-2 Stunden abhangt. Evtl. sollte das Modell explizit
dariber informiert werden.

e Gerate-ID (nur Multi-Device Modell): Im Falle des einzelnen Modells,
das mit den Profilen von allen 20 Gerate trainiert wird, kdnnte es
Sinn machen dem Modell mitzuteilen, von welchem Gerat die Trai-
ningsdaten stammen.

‘/()mpul (48 values):
\ Consumption (1)

Dense Layer

I

LSTM Layer 2

I

LSTM Layer 1

[ ~--__ [Input 2 (336 values):
N - . 1¢ .
Input 1 (336 values): Hmw_l ,lD_ U‘]) ot
{ Consumption (1) J MA3 (1) or
R i Weekday (G) or
ResidentsCount (1)

Abbildung 25 Die Architektur des evaluierten LSTM-Modells

Um Overfitting zu vermeiden, wurden die Regularisierungs-Techniken , Dropout™ und
,Early-Stopping" verwendet. Als Optimierer wurde ,Adam™ verwendet, da dieser als schnell
und zuverlassig gilt (Goodfellow, Bengio, & Courville, 2016).
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Es wurde eine Rastersuche tber die Hyper-Parameter Batch-Size (BS), Learning-Rate (LR),
Anzahl der Neuronen (U) und Dropout-Rates (DO) vorgenommen. Wir evaluierten die
Batch-GréBen 64 und 259, Learning-Rates 0.01 und 0.001, 32 und 62 Neuronen und Drop-
out-Raten von 0.0 und 0.2.

5.3.2 Ergebnisse

Tabelle 4 Ergebnisse der Evaluierung in Form der Fehlermetriken Mean Absolute Scaled
Error (MASE) und Mean Absolute Error (MAE). die Ergebnisse der Evaluierung mit SARIMA
als Modell mit dem kleinsten Fehler (MASE = 0.623). Die Fehlermetrik MAE ist ohne Bench-
mark-Modell wenig aussagekraftig und vergleichbar, wurde aber trotzdem inkludiert, um
sich eine Vorstellung Uber die absolute GréBenordnung machen zu kénnen. Alle MASE-
Werte sind kleiner als 1, was bedeutet, dass zumindest alle Modelle besser als das Bench-
mark-Methode ,Saisonal-Naiv" sind.

Tabelle 4 Ergebnisse der Evaluierung in Form der Fehlermetriken Mean Absolute Scaled Error
(MASE) und Mean Absolute Error (MAE).

Modell Beste Konfiguration MAE MASE
Exponential Smoothing Kein Trend 0.124  0.826
SARIMA (2,0,0)(0,0,1)24 0.091 0.623
SD LSTM BS 64, LR 0.01, U 64, DO 0.2 0.129 | 0.994
SD LSTM + MA3 BS 64, LR 0.01, U 64, DO 0.0 0.120 | 0.934
SD LSTM + Wochentag BS 64, LR 0.01, U 64, DO 0.2 0.099 | 0.795

SD LSTM + #Bewohner BS 64, LR 0.01, U 64, DO 0.2 0.096 @ 0.782

MD LSTM BS 64, LR 0.01, U 32, DO 0.2 0.082 | 0.969
MD LSTM + Gerate-ID BS 64, LR 0.01, U 32, DO 0.0 0.080 | 0.868
MD LSTM + MA3 BS 64, LR 0.01, U 32, DO 0.2 0.082  0.939
MD LSTM + Wochentag BS 64, LR 0.01, U 64, DO 0.0 0.073  0.822
MD LSTM + #Bewoh- BS 64, LR 0.01, U 32, DO 0.2 0.078 | 0.891
ner
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Abbildung 26 Beispiel-Vorhersage des SARIMA-Modells

Das Multi-Device LSTM Modell war bei einigen Konfigurationen nicht imstande zu lernen,
was zur Folge hatte, dass die Vorhersage eine konstante 0 war. Das resultierte in einem
niedrigem MAE und somit auch zu einem kleinem MASE, da ein groBer Teil der Zeitreihen
ebenfalls 0-Werte sind.

Das Single-Device LSTM-Modell zeigte bessere Ergebnisse bei Inkludierung der Features
~Wochentag" bzw. ,Anzahl Bewohner", allerdings entstehen die niedrigeren Fehlermetriken
teilweise wieder durch Vorhersagen von langen 0-Werte-Sequenzen bei unregelmaBigen
Profilen, die schwer zu prognostizieren sind. Dabei ist nicht festzustellen, ob das LSTM
gelernt hat die 0-Sequenzen zu erzeugen, um den Fehler méglichst gering zu halten oder
~Nichts™ bzw. das ,Falsche"™ gelernt hat. Eine Beispiel-Prognose flir dieses Verhalten in Ab-
bildung 27 Die Prognose des SD-LSTMs liefert konstant "0" bei einem unregelmdBigem
Profil. sehen.
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Abbildung 27 Die Prognose des SD-LSTMs liefert konstant "0" bei einem unregelmaBigem Profil.

Generell kann gesagt werden, dass die Prognose von Warmwasserzapfungen ein schwierig
zu lésendes Problem ist, da die Profile zu einem gewissen Grad einem stochastischem Pro-
zess entsprechen.

Die Einfachheit der statistischen Modelle ist ein groBer Vorteil gegeniber den aufwandig
zu trainierenden neuronalen Netzen. Weiters ist die Suche nach geeigneten Hyper-Para-
metern beim maschinellen Lernen ein zeitaufwandiger Prozess.

Die rasterbasierte Suche von Hyper-Parametern kdnnte in weiteren Experimenten durch
Techniken wie Bayes’sche oder gradientenbasierte Optimierung ausgetauscht werden, um
eventuell bessere Ergebnisse mit LSTM-Modellen zu erhalten.
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Abbildung 28 Gute Vorhersage des SD LSTMs mit zusatzlichem Feature "Wochentag"

5.4

Erweiterung der Methodik: LSTM und FFNN

Parallel zu den zuvor beschriebenen Methoden wurde unterschiedliche Auspragungen von
LSTM und FFNN Modellen entwickelt und mit unterschiedlichen Konfigurationen getestet.
Das Ziel hinter dieser Entwicklung war es, ein Modell zu entwickelt, das sowohl flir den
Warmwasserverbrauch als auch fiir den Verbrauch von anderen Energieformen (z.B. elekt-
rische Energie) ohne weitere Anpassungen genutzt werden kann.

5.4.1

Prognose - 24-Stunden Warmwasserverbrauch

Flr die Prognhose des Warmwasserverbrauchs in einem zeitlichen Horizont von 24 Stunden
wurden unterschiedliche Modelle auf Basis von kinstlichen neuronalen Netzwerkarchitek-
turen mit verschiedenen zeitlichen Auflésungen (15 Minuten, 1 Stunde, 4 Stunden) imple-
mentiert:

Long Short Term Memory (LSTM) networks. Dieses Modell wird ein-
mal mit Zeitreihen des Warmwasserverbrauchs trainiert. Ein zweites
Modell gleicher Architektur wird neben den Zeitreihen des Warmwas-
serverbrauchs mit zusatzlichen Features ,ausgestattet" und trainiert.
Das Ziel dieses Ansatzes war die Ermittlung des Einflusses der zu-
satzlichen Features auf die Qualitat der Prognosen. Die zusatzlichen
Features umfassen: die Tageszeit, den Wochentag, ob es sich um ei-
nen Feiertag handelt und autoregressive Informationen (zeitlichen
Verschiebung der Zeitreihen).

Grundsatzlich kénnen LSTM networks als Erweiterung zu Recurrent
Neural Networks (RNN) gesehen werden. Beide Modelle kénnen In-
formationen in einem inneren Zustand (Gedachtnis — siehe Beschrei-
bung LSTM oben) speichern. Im Vergleich zu RNN kdénnen mittels
LSTM aufgrund ihrer inneren Struktur auch lange sequentielle Zeit-
reihen verarbeitet werden.

Feedforward Neuronales Netz mit Warmwasserverbrauchs-Zeitrei-
hen. Eine Ebene in einem Neuronalen Netz wird durch eine Vielzahl
von Neuronen gebildet, wobei jedes Neuron einer Ebene dieselben
Input-Daten erhalt. Die Ausgangwerte jeder Ebene stellt ein Vektor
dar, der die Ausgangsdaten jedes einzelnen Neurons dieser Ebene
enthalt. Ein Vektor wird von einer Ebene (als Eingangssignal) verar-
beitet, der Ausgangsvektor dient wiederum der nachsten Ebene als
Eingang. Werden mehrere dieser Ebenen gestapelt, wird dieser Vor-
gang als Deep Learning bezeichnet. Abbildung 29 zeigt ein einfaches
Beispiel eines Neuronalen Netzes, in dem finf Neuronen eine Ebene
bilden. Durch die Stapelung mehrerer solcher Ebenen kann ein belie-
big groBes Netz gebildet werden. Unter einem vollstédndig-
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verbundenen Netz versteht man ein Netzwerk, bei dem der Ausgang
einer Ebene als Eingang jedes einzelnen Neurons der Folgeebene
dient.

Inputs
Weights/Biases

O | Neuron Layer

. O

= ?

° O

o Output Neuron il
° O Q-0
O

o’ O

O

- O

. |

Abbildung 29 Vollstandig-verbundenes Feedforward Neural Network.

Die Modelle wurden zur Analyse der Prognosequalitét mit einer Benchmark (Tag zuvor,
Wochen-Durchschnitt) verglichen. Zusatzlich wurde ein , Allgemeines Modell* mit einem
Individuellen Modell" in Bezug auf die Prognosequalitdt verglichen. Beim Allgemeinen Mo-
dell erfolgt das Training des Neuronalen Netzes auf Basis historischer Verbrauchdaten aller
Haushalte, beim ,Individuellen Modell® wird jeweils nur der Haushalt-spezifische histori-
sche Datensatz fiir das Training verwendet.

5.4.2 Error- und Performance-Metric

Um die Qualitdt von Prognosemodellen erheben zu kénnen, werden zwei Error-Metriken
angewendet:

Error-Metric: Mittels Mean-Absolute-Error (MEA) kann die Abwei-
chung zwischen Prognose-Zeitreihen und den tatsachlichen Messwer-
ten angegeben werden:

n
1
MAE = — -9
n}SWt Vel
t=1

wobei n for die Lange der Zeitreihe steht (24 fur eine stindliche Auf-
I6sung oder 96 fir eine Auflésung von 15 Minuten). Die berechnete
Abweichung zeigt die Abweichung zwischen den Prognosewerten j,
und den tatsachlichen Werten y, gemittelt tber alle Zeitschritte ¢t. Je-
doch fuhrt dieses Verfahren aufgrund des punktweisen Vergleichs
aufgrund eines mdglicherweise auftretenden ,Double Penalty Errors"
zu hohen Abweichungen: Der ,Double Penalty Error" beschreibt eine
Situation, in der der tatséchliche Bedarf und die Prognose-Zeitreihe
einen ahnlichen Verlauf aufweisen, jedoch um wenige Zeitschritte
versetzt (siehe Abbildung 29). Im Extremfall sind beide Zeitreihen
identisch, jedoch um einen einzelnen Zeitschritt versetzt. Grundsatz-
lich wiirde es sich in diesem Fall um eine qualitativ hochwertige Prog-
nose handeln - vor allem in jenen Anwendungen, in denen der zeitli-
che Aspekt vernachléssigt werden kann. Durch die punktweise Be-
rechnung der Abweichung zwischen Prognose- und Messdaten in
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jedem Zeitschritt, kann sich eine hohe Abweichung zum Zeitschritt t
sowie im nachfolgenden Zeitschritt ergeben (wodurch sich die Be-
zeichnung des Double Penalty Errors ergibt).

e Performance Metric: Aufgrund der zuvor beschriebenen Schwierigkeit
der punktweisen Error-Metric, wurde ein zweites Verfahren einge-
setzt. Zusatzlich zur mittleren Abweichung MAE wird die Abweichung
der gesamten Energiemenge berlicksichtigt, wodurch sich eine Ver-
besserung in der Prognose-Qualitat ergibt:

n

n
Z)A’t - Z)’t
t=1

t=1

EnergyDeviation =

wobei sich n wiederum auf die Lange der Zeitreihen und t auf die
Zeitschritte bezieht. Der erste Term der rechten Seite der angegebe-
nen Gleichung enthalt die prognostizierte Gesamtenergie and einem
Tag und der rechte Term die tatsachlich gemessene Energie.

Dowbie Penalty Error

Trugh

-~ Forscast

e B

Abbildung 30 Grafische Darstellung des Double Penalty Errors
5.4.3 Trainings- und Testdaten

Die vorhandenen Daten liber den Warmwasserverbrauch wurden in ein Set von Trainings-
daten sowie in ein Set von Testdaten eingeteilt. Die Modelle lernen anhand der Trainings-
daten die optimale Einstellung der Parameter, die den Zusammenhang zwischen Eingangs-
und Ausgangsdaten beschreiben. AnschlieBend werden die Modelle mittels Testdaten vali-

diert um zu prifen, ob auch unvorhersehbare Eingangsdaten zu verwendbaren Ergebnissen
fihren.

Die Aufteilung der Daten erfolgte in einem Verhaltnis von 3:1, das bedeutet, dass 75 %

der Daten flr den Lernprozess und 25 % der Daten fiir die Validierung der Modelle ver-
wendet wurden.
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5.4.4 Ergebnisse
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Abbildung 31 Warmwasser-Verbrauch einer Woche (5 Haushalte)

Abbildung 31 zeigt den Warmwasser-Verbrauch von 5 Haushalten einer Woche in einer
Auflésung von 15 Minuten. Anhand dieser Grafik ist der dynamische und sehr volatile Was-
serverbrauch erkennbar. Dies fiihrt zu einer enormen Herausforderung an die Modelle zur
Vorhersage von zukinftigen Warmwasserentnahmen und zu hohen Fehlern zwischen den
prognostizierten Zeitreihen und den tatsdchlichen Entnahmen.

Maodel Predictions Minute Data General Data Test

— Tiue
LSTM all
LSTM one
® — mP

P
5]

B

Warm Wasser Verbrauch [I]

=1

o A o

15 min intervals of the day

Abbildung 32 Vergleich zwischen dem tatsachlichen Warmwasser-Verbrauch und den Ergebnissen
der Prognosemodelle in einer Auflosung von 15 Minuten.

Abbildung 32 zeigt den tatsachlichen Warmwasser-Verbrauch eines ausgewahlten Haus-
haltes (blau ,True"™) in einer zeitlichen Auflésung von 15 Minuten sowie die Ergebnisse
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der Prognose. Hierbei wurde ein generelles Modell trainiert (auf Basis der historischen
Verbrauchsdaten aller Haushalte), das als Basis flir die Prognose verwendet wurde.

e ,LSTM all* (Long short-term memory with several model input para-
meters) zeigt die Vorhersage des Verbrauchs unter Verwendung zu-
satzlicher Features (Wochentag, Feiertagsinformation, Stunde des

Tages, Monat, WohnungsgréBe) und der historischen Verbrauchsda-
ten.

e ,LSTM one" (Long short-term memory with one model input parame-
ter) zeigt die Vorhersage des Verbrauchs ohne Beriicksichtigung zu-
satzlicher Informationen - es wurde lediglich der historische Ver-

brauch als EingangsgroBe fir das Training und die Prognose verwen-
det.

e ,MLP" zeigt die Vorhersage des Verbrauchs auf Basis eines Feed For-
ward Neural Networks

Offensichtlich verhalten sich die drei Modelle sehr &@hnlich — nach Zeitschritt 40 wird in den
Modellen eine signifikante Entnahme prognostiziert, ebenso werden mehrere Entnahmen
zwischen Zeitschritt 60 und 80 in allen Modellen prognostiziert. Es kann festgehalten wer-
den, dass sich die Prognosen und der tatsdachliche Verlauf weder in der Menge noch in den

Zeitpunkten des Verbrauchs beim generellen Modell mit einer zeitlichen Auflésung von 15
Minuten decken.

140 Model Predictions Hour General Data Test

— True
I,ﬂ LSTM all
|| LSTM one

f
120 / |‘ MLP

2

Warm Wasser Verbrauch [I]
=

=]

20

Hour of the day

Abbildung 33 Vergleich zwischen dem tatsachlichen Warmwasser-Verbrauch und den Ergebnissen
der Prognosemodelle in einer Aufldsung von 60 Minuten.

Abbildung 33 zeigt die Ergebnisse der drei zuvor erwahnten Prognosemodelle im Vergleich
mit dem tatsachlichen Verlauf in einer zeitlichen Auflésung von einer Stunde (im Vergleich
zu Abbildung 32, bei der eine Aufldsung von 15 Minuten verwendet wurde). In diesem Fall
werden die Unterschiede zwischen LSTM und MLP deutlich sichtbar, wobei bei MLP hdhere
Entnahmen prognostiziert werden. Grundsatzlich ist aber auch hier eine signifikante Ab-
weichung zwischen Prognose und tatsachlichem Verbrauch erkennbar.
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Abbildung 34 Warmwasser-Entnahme einer Warmepumpe in einer zeitlichen Auflésung von einer
Stunde.

Abbildung 34 zeigt die Warmwasser-Entnahme einer ausgewahlten Warmepumpe (,, True"
illustriert die tatsachliche Entnahme, orange und griin zeigen die prognostizierten Zeitrei-
hen des Verbrauchs). In diesem Fall konnten deutlich bessere Ergebnisse im Vergleich zu
den vorherigen Beispielen erzielt werden - sowohl die Enthahme-Mengen als auch deren

Zeitpunkte konnten in beiden Modellen relativ gut prognostiziert werden.

Different Model MAE [I] on Indi Hour Train Set Different Model MAE [I] on Indi Hour Test Set
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Abbildung 35 Mittlerer absoluter Fehler der Modelle fir die Trainings- und Testdaten.

Abbildung 35 zeigt den mittleren absoluten Fehler (MAE) in Liter fir die Benchmark und
die drei implementierten Prognosemodelle sowohl flr die Trainings- (links) als auch die
Testdaten (rechts). Aufgrund dieser Ergebnisse ist erkennbar, dass sich die LSTM-
Prognosemodelle unwesentlich unterscheiden.

Zusammenfassung der Ergebnisse:

e Die Prognose des Warmwasser-Verbrauchs auf Einzelhaushaltsebene
ist aufgrund der hohen Dynamik sowie des volatilen Verhaltens du-
Bert schwierig zu prognostizieren und flihrt zu hohen Abweichungen

+
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zwischen dem tatsachlichen Verlauf und den prognostizierten Zeitrei-
hen.

e Die Zeitreihen des Warmwasser-Verbrauchs enthalten an vielen Zeit-
punkten den Wert 0 (da an diesen Zeitpunkten keine Entnahme statt-
gefunden hat). Zusatzlich variiert der zeitliche Verlauf der Entnahmen
sehr deutlich. Das fihrt letztendlich dazu, dass sich durch die ge-
wahlte Fehler-Metrik die Abweichung zwischen Prognose und Realda-
ten doppelt auswirkt (Double Penalty Fault).

e Die LSTM Prognosemodelle liefern keine besseren Ergebnisse (in Be-
zug auf die Abweichung zwischen Prognose- und Realdaten) als ein-
fache Feed Forward Neural Networks.

e Die Verwendung von zusatzlichen Features bei LSTM (Wochentag,
Feiertag, WohnungsgrtBe, etc.) flihrte zu keiner signifikanten Ver-
besserung der Prognosequalitat.

Ausblick/Verbesserungspotential

e Zusammenfassung/Gruppierung (Clustering) von Kunden mit einem
ahnlichen Verbrauchsprofil sowie Training der Modelle und Prognose
des Verbrauchs pro Kundengruppe.

e Reduktion der zeitlichen Auflésung um einen Glattungseffekt zu er-
zielen.

e Vorab-Filterung der Verbrauchsdaten um auBergewo6hnliche (Ur-
laubszeit) und fehlerhafte (Messfehler) Zeitreihen aus den Trainings-
daten zu entfernen, um die Beeinflussung der Modelle durch uner-
wilnschte Daten zu minimieren.

e Entwicklung und Nutzung einer angemessenen Fehler-Metrik fir Zeit-
serien.
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