

DIGITAL TWIN

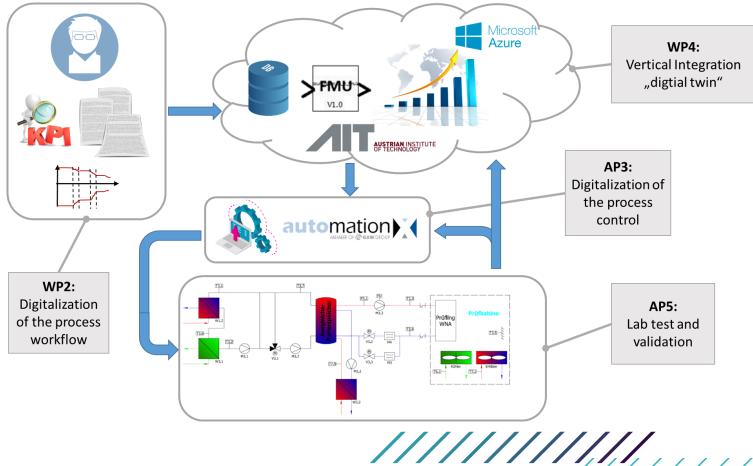
- Digital Twins originate from industrial production
- Virtual counterpart of a physical system
 - Kopplung Modellsimulation mit realen Betriebsdaten
 - Often runs in cloud
- Ingredients
 - Models
 - Simulations
 - Algorithms
 - Knowledge
 - Operation Data
- Lifespan: design construction operation
- Typical applications:
 - Optimize robot design
 - Determine optimal path
 - Diagnostics in operation (ageing)

DIGITAL BUILDING TWINS IN INDUSTRY

Project DigiBatch Digitalization of Existing Recipe-oriented Production Systems in Process Industries

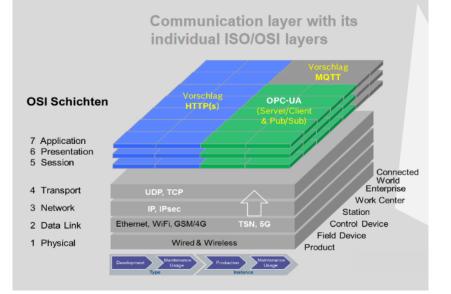
PROJECT CONTEXT

- Digitalization of process industries
 - Flexibilization vs. continuous processes ("lot size of 1")
 - Optimized over a long period


- many (sub-)processes as batch
 - E.g. drying, sterilization, cooking, baking, casting...
 - Advantage through easy customization

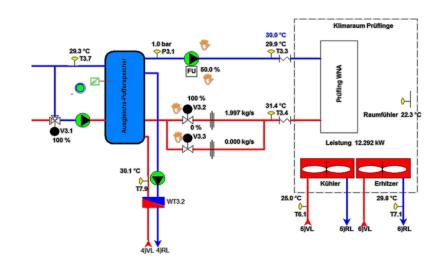
GOALS

- A showcase for further experimental development
 - Process optimization
 - Process recalibration
- Demonstrate Digital Twin consisting of
 - Knowledge base
 - Co-simulation
 - Cloud platform
 - Operation data
- Achieve quantifiable
 - Utilization
 - Availability
 - Energy efficiency
 - User intervention



OPC UNIFIED ARCHITECTURE (OPC UA)

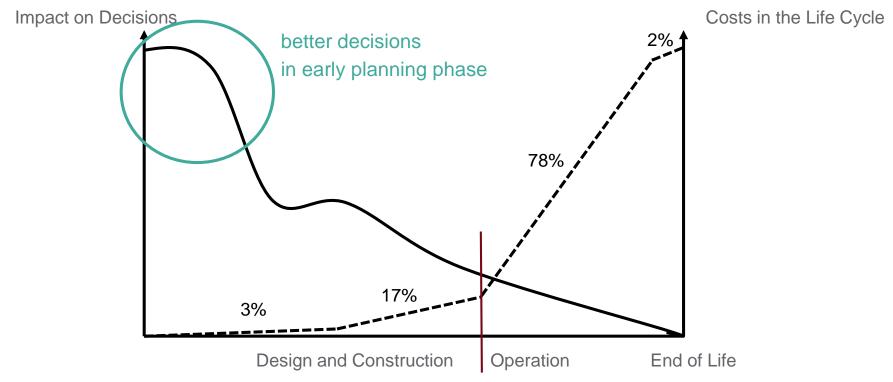
- OPC UA
 - is a data exchange standard
 - is a service oriented architecture (SOA)
 - has a security model, which is audited by the German BSI (Bundesamt f
 ür Sicherheit in der Informationstechnik)
 - is vendor neutral
- OPC UA can
 - Transport semantics with data
 - Publisher/Subscriber communication
 - Client/Server communication
 - Historical data access
 - Use Information Models (e.g. ISA-95)
 - Companion Models (e.g. BACnet)



https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.pdf

DIGITAL TWIN AND CLOUD INTEGRATION I

- The core process is modeled in Modelica/Dymola (FMU)
- Two time intensive iterative processes are identified
 - Hydraulic problem
 - Thermal problem
- A recommender system is setup
 - Define target → simulate FMU → optimization → returns desired setpoint to the operator



DIGITAL BUILDING TWIN

80% OF COSTS IN BUILDINGS DURING OPERATION PHASE

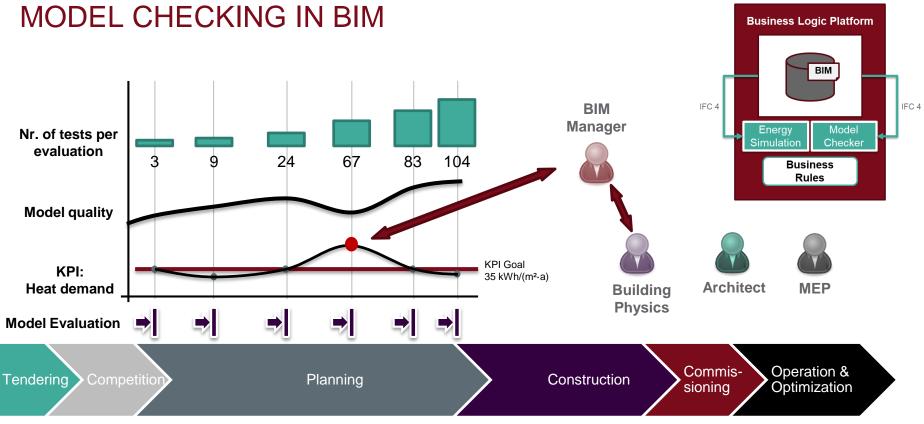
Datenquelle:Leitfaden Hochbau, IG Lebenszyklus

BIM

"BIM as single source of truth in planning, construction and operation"

- Tendering Evaluation (Digitale Baueinreichung)
- Model-based controller validation
- Semantic data analysis
- Procedural Design in HVAC

- Combination of
 - AI methods for clustering and identification
 - Open semantic interoperability standards
 - Heuristics
- Model transformations for domains
 - HVAC systems
 - Building Controls
 - Facility Management
- Machine learning framework
 - Model checking
 - Semi-automated model fixing
 - Extracting relevant substructures from the model (e.g. HVAC)

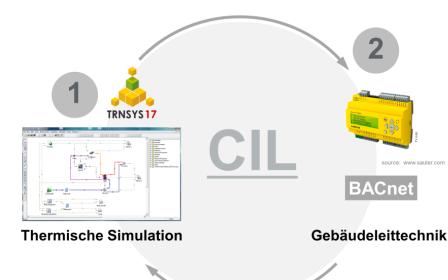

RESEARCH PROGRAM ON EUROPEAN LEVEL: "DIGITAL BUILDING TWINS"

Scope: Develop a digital building twin – a real-time digital representation of a building or infrastructure

- Go beyond the data provided through BIM
- Answer to the lack of open semantic interoperability standards between actual BIM and future BIM
- Automated progress monitoring allowing to verify that the completed work is consistent with plans and specifications
- Tracking of daily changes in an as-build model, allowing early detection of discrepancies
- Quality assessment by image processing technologies should allow verification of structure conditions and detection of cracks or material displacement
- Optimisation of equipment usage by advanced imaging and automatic tracking

Budget: 5-6M€ TRL: 4-6 Research and Innovation Action (RIA)

METHODS FOR BIM MODEL CHECKING


- IFC-based rule definitions
 - Solibri model checker
 - E. g. "is the building envelope complete?"
- Thermal simulation
 - EnergyPlus
 - CYPE
 - IDA ICE
 - AIT Building Model Generator
 - E.g. "What is the thermal load of the current design?"

CONTROLLER-IN-THE-LOOP (CIL) DIGITAL TEST-RIG FOR BUILDING CONTROLS

Methods

- Co-simulation (Ptolemy II)
- TRNSYS system simulation
- Building automation protocols
 - BACnet, Modbus, ...
- Real-time coupling of simulation and hardware

CONTROLLER-IN-THE-LOOP (CIL)

Headquarter Post, Vienna:

- Check and optimize control strategies
- Reduced commissioning time for building controllers
- Early identification of bugs before real-world operation (e.g. during part load operation)

SUMMARY

Digital Twin in Buildings

- Enables coupling of domain specific tools
 - Thermal simulation
- Enables linking of design and operation data
 - Living energy certificate
- Is a source of data for city and infrastructure
- Requires:
- Avoiding re-design of models in the workflow
- Thorough quality checking:
 - Validity
 - Consistency
- Improved standardization of parameters

THANK YOU Gerhard ZUCKER gerhard.zucker@ait.ac.at

