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Abstract. Recognising pedestrian attributes is a
challenging task for computer vision, particularly
when the imaging quality is poor with complex back-
ground clutter and uncontrolled viewing conditions.
An overview of current popular datasets and there
shortcomings is briefly described. The work com-
bines an instant segmentation model with vision
transformer, which is trained on a variety of image-
text pairs. The approach is promising to enable fast
search in large datasets.

1. Introduction

Pedestrian attributes such as ’blue bag’ or ’blond
hair’ are searchable semantic descriptions to identify
persons in image datasets. This kind of search is part
of the soft-biometrics field and there are various ap-
plications such as face verification, human identifi-
cation and person re-identification (ReID) [56]. The
latter is the process of associating images or videos of
the same person taken from different angles and cam-
eras. Pedestrian attributes recognition (PAR) is the
task of extracting attributes of given person images,
as shown in Fig. 1. These attrubtes can be seen as
high-level semantic information which are hopefully
more robust to changes in the appearance of people
in different images then low-level features, such as
HOG [6], LBP [32] or deep features attributes. Al-
though many works have been proposed on this topic,
PAR is still an unsolved problem due to challeng-
ing factors, such as multi-view camera poses, oc-
clusions, low image resolutions, illumniation chal-
lenges, unbalanced data distribution or image blur.
Some variations are presented in Fig. 2. In litera-
ture PAR is also known as attribute-person recogni-
tion (APR) [25] but we use the term PAR.

To address these difficulties, we use deep learn-

Figure 1. Pedestrian attributes recognition is a key element
in video surveillance. The goal is to predict a group of
attributes to describe the characteristics of persons. For
example, the attributes of the person in the red bounding
box are: red hat, black jacket and beige pants.

ing approaches for PAR. In general, deep features
obtained by neural networks have stronger discrimi-
native abilities than hand-crafted features. Moreover,
we would like to have a neural network, which can
be easily adapted to new image sequences and pede-
trian attributes. Therefore, in this work we combine
an instance-segmentation model with a vision trans-
former, which was trained on image-text pairs. This
combination achieves promising results.

2. Related Work

The different approaches can be roughly divided
into two directions - metric learning and attribute
recognition.

2.1. Metric Learning

The objective of metric learning [52, 18] is to
learn the metric feature space of persons so that



Figure 2. Example images from the RAPv2 dataset [22].
Top row - from left to right: High quality image, occluded
person, blurred image, low resolution image. Bottom row:
Various views of the same person.

the distances between similar persons reduce and
that of dissimilar persons enlarge. While traditional
metric learning algorithms [20] are usually based
on linear transformations, recent advances in deep
learning provide a powerful tool to learn a task-
specific metric. Many metric learning algorithms
have been proposed in image retrieval [47], person
re-identification [5], face recognition [38, 41, 28, 49],
etc. The models directly learns image representations
through contrastive loss and triplet loss. Contrastive
loss [13] restricts pair inputs and results in distances
between similar pairs as close as possible and that of
dissimilar pairs to be larger than a threshold. Triplet
loss [38] applies triplet as input and ensures the dif-
ference between the distance of (anchor, negative)
feature and (anchor, positive) feature is larger than
a threshold. Beyond triplet loss, quadruplet loss [5]
and quintuplet loss [16] are also introduced to im-
prove performance. For face recognition the center
loss [48] is applied.

2.2. Attribute Recognition

In PAR, various approaches are available such as
global based [1, 21, 8, 39], local parts based [27],
visual attention based [30], sequential prediction
based [54] methods. Sudowe et al. [39] and Li et
al. [21] proposed that jointly training multiple at-
tributes can improve the performance of attribute

recognition. The LGNet [27] embeds the atten-
tion mechanism [50] in the network, allowing the
model to decide where to focus by itself. Hydraplus-
Net [30] proposes an attention based model, which
fuses multi-level features to exploit global and lo-
cal contents of the pedestrian image. ALM [44]
localizes attribute-specific regions to achieve better
performance by spatial transformer network. Han
et al. [14] propose a novel attribute-aware atten-
tion model, which can learn local attribute repre-
sentation and global category representation simul-
taneously in an end-to-end manner. Localizing by
describing [29] is an attribute-guided attention lo-
calization scheme where the local region localizers
are learned under the guidance of part attribute de-
scriptions. By designing a novel reward strategy,
they are able to learn to locate regions that are spa-
tially and semantically distinctive with reinforcement
learning algorithm. [37] designs an attention mech-
anism for aggregating multi-scale features as well as
a loss function similar to focal loss [24] in order to
tackle the imbalanced data problem. Zao et al. [54]
proposes an end-to-end grouping recurrent learning
(GRL) model that takes advantage of the intra-group
mutual exclusion and inter-group correlation to im-
prove the performance of pedestrian attribute recog-
nition. ReID aims at matching a target person in a
set of query pedestrian images. Recent deep learn-
ing based ReID approaches achieve promising so-
lutions [46, 10, 4, 2, 11, 34]. Some works com-
bine PAR and ReID information for multi-task learn-
ing [40] or assisting the main task [25, 26]. These
methods can be briefly divided in two categories: (1)
shared backbone and task-independent branches (2)
task-independent models and combining high level
features in some way (e.g., concatenated FC). For
example, Lin et al. [25] use a multi-task network
which learns a ReID embedding and at the same
time predicts pedestrian attributes, while sharing the
same backbone. Sun et al. [40] trains two different
branches, the identity one and the attribute one. The
identity branch exploits local cues from different re-
gions of the pedestrian body and the attribute branch
has an effective attribute predictor.

3. Datasets

The proposed method is evaluated on three pub-
licly available pedestrian attribute datasets and an
open image dataset:
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Datasets Resolution GLVN BRISQUE
PETA 0.013 (0.008) 20.2 31.5

PA-100K 0.022 (0.022) 24.3 52.7
RAPv2 0.044 (0.028) 28.8 54.5

OpenImages 0.78 (0.74) 32.9 25.5

Table 1. Overview datasets: PETA, PA-100k, RAPv2 and
OpenImage. Image resolution calculated in mega pixel.
The mediam values of GLVN [36] (normalized gray level
variance) and BRISQUE [31] are provided. Note, that a
high resolution and a high GLVN value are desired. The
lower the BRISQUE value the better the image quality.

• The PETA1 dataset [8] consists of 19,000 im-
ages with 61 binary attributes and 4 multiclass
attributes.

• The RAPv22 dataset [22] contains 84,928 im-
ages which are collected from 25 indoor surveil-
lance cameras, where each image is annotated
with 69 fine-grained attributes. Following the
official protocol [22], we split the whole dataset
into 50,957 training images as well as 16,986
val and 16,986 test images.

• The PA-100K3 dataset [30] is to-date the
largest dataset for pedestrian attribute recog-
nition, which contains 100,000 pedestrian im-
ages in total collected from outdoor surveillance
cameras. Each image is annotated with 26 com-
monly used attributes. According to the official
setting [30], the whole dataset is randomly split
into 80,000 training images, 10,000 validation
images and 10,000 test images.

• Open Images4 is a dataset of≈9M images anno-
tated with image-level labels, object bounding
boxes, object segmentation masks, visual rela-
tionships, and localized narratives:

The datasets are briefly analyzed to provide some
information about their quality. A summary of some
quality quaracteristics are displayed in Tab. 1. Ob-
viously the image resolution and quality of the PAR
datasets are rather poor with respect to other com-
monly used datasets such as Open Images in com-
puter vision.

1http://mmlab.ie.cuhk.edu.hk/projects/PETA.html,
11/03/2021

2http://www.rapdataset.com/rapv2.html, 11/03/2021
3https://github.com/xh-liu/HydraPlus-Net, 11/03/2021
4https://storage.googleapis.com/openimages/web/index.html,

license: CC BY 2.0

Figure 3. Examples of incorrectly annotated images or un-
recognizable annotations of the RAPv2 dataset [22]. Top
left: Female, top middle: glasses, top right: hat, down left:
attachement box, down middle: glasses, down right: hat.

Novel approaches try to improve the performance
by extracting more discriminative features. For this
research the openly available popular datasets are
used. These datasets, however, must be viewed crit-
ically; i.e. there are a large number of identical
pedestrian identities in train and test set [17]. This
results in a large number of similar images of the
same pedestrian identity in the train and test set. Jia
et al. [17] analyzed that the proportion of common-
identity5 images is significant in the popular PETA
and RAPv2 [22] (updated version of RAPv1 [23])
datasets. They discovered that 57.5% and 31.5% of
test set images have similar counterparts of the same
pedestrian in the train set of PETA and RAPv2, re-
spectively. Hence, the common-identity issue in the
datasets leads to overestimated performance and mis-
leads the evaluation of recent methods [17].

4. Generating novel symthetic data via GANs

Convolutional neural networks (CNNs) have re-
cently become increasingly predominant choices in
PAR (as well as ReID) thanks to their strong rep-
resentation power and the ability to learn invariant
deep embeddings. As a result, designing or learn-

5Common-identity indicates pedestrian identity exists both in
train set and test set. Unique-identity indicates the identity only
exists in train set or test set.
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Figure 4. Sample images generated based on the dataset
Market-1501 [55] and pre-trained GAN model of [57]

ing representations that are robust against intra-class
variations has been one of the major targets in PAR.
A possibility to enhance robustness of deep learning
models is to apply data augmentation during train-
ing. Another approach is to collect more data, which
can be very tedious and expensive. A rather novel
approach is to use Generative adversarial networks
(GANs) [12] to generate data from a dataset that
is very similar from the original data. With recent
progress generative models have become appealing
choices to introduce additional augmented data for
’free’ [58].

We generated additional data based on work of
Zheng et al. [57]. They made their software publicly
available6 for academic research. For generating the
images, we used the dataset Market-1501 [55] and
their pre-trained model. Same sample images are dis-
played in Fig. 4. The quality of the generated images
is, however, not suffcicient for improving our PAR
models. We also tried to finetune the original model
to PAR-datasets. But unfortunately the model param-
eters oscillated and never converged.

5. Evaluation Metrics

This section reviews some common metrics used
in the evaluation of PAR methods as described in
[23]. In general, two metrices can be calculated

6https://github.com/NVlabs/DG-Net, 11/03/2021

at two different levels: label-based and instance-
based. The evaluation at label-based considers each
attribute independently. The metric adopted in most
papers for label-based evaluation is the mean accu-
racy (mA) [8].

Due to the unbalanced distribution of attributes,
mean accuracy (mA) is computed as the average of
the classification accuracy of positive and negative
examples for each individual attribute i. After that,
mAi is averaged over all attributes as the final recog-
nition rate mA. The evaluation criterion for each at-
tribute i can be formally calculated by:

mAi =
1

2N

N∑
j=1

(
TPj

Pj
+

TNj

Nj

)
(1)

where N is the number of samples; Pj and TPj

are the numbers of positive examples and correctly
predicted positive examples, respectively; Nj and
TNj are the numbers of negative examples and cor-
rectly predicted negative examples, respectively.

The overall mean accuracy (mA) over L attributes
is:

mA =
1

L

L∑
i=1

mAi (2)

Instance-based evaluation captures better the con-
sistence of prediction on a given pedestrian im-
age [53], and it includes four metrices: accuracy
(Acc), precision (Prec), recall (Rec) rate and F1

value, as defined below:

Acc =
1

N

N∑
i=1

|Yi ∩ Ŷi)|
|Yi ∪ Ŷi))|

Prec =
1

N

N∑
i=1

|Yi ∩ Ŷi)|
|Ŷi)|

Rec =
1

N

N∑
i=1

|Yi ∩ Ŷi)|
|Yi|

F1 =
2 ∗ Preci ∗ Reci

Preci + Reci

(3)

where N is the number of examples, Yi is the
ground truth positive label of the i’th example, Ŷi re-
turns the predicted positive labels for i’th example
and | · | means the set cardinality.

6. Methodology and evaluation

Many models proposed in literature are optimized
exactly for particular datasets. And quite often a sep-
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arate model is trained for each dataset, which makes
it hard for real-world applications. Therefore, we
wanted to use models that generalize well and can
be quickly applied to new datasets.

Training large networks by scratch is really expen-
sive nowadays. Some examples shall illustrate the
effort needed for training large models. For instance,
XLNet1 [51], a model for language understanding,
was trained on 512 TPU v3 chips for 5.5 days. The
total costs are approximately over $500,000 (= 512
* 5.5 days * 8$/hour7). Noisy student EfficientNet-
L22 was trained with 300MM images on 256 TPU
v3 chips for 6 days, which costs ≈$295,000. The
largest CLIP model [35] (RN50x64) was trained for
18 days on 592 V100 GPUs. The price of a single
V100 GPUs is e10,5008.

6.1. DeepFace

Deepface9 is a lightweight face recognition and fa-
cial attribute analysis (age, gender, emotion and race)
framework for python. It is a hybrid face recognition
framework wrapping state-of-the-art models: VGG-
Face [33], Google FaceNet [38], OpenFace [3], Face-
book DeepFace [43], DeepID [42], ArcFace [7] and
Dlib [19]. Those models already reached and passed
the human level accuracy. The library is mainly
based on TensorFlow and Keras. Some results are
displaye in Tab. 2. Note, that faces in PAR datasets
are really small, so it is rather challenging to extract
semantic information based only on the face.

6.2. ViT

The vision transformer (ViT) introduced by Doso-
vitskiy et al. [9] is an architecture directly inherited
from Natural Language Processing [45], but applied
to image classification with raw image patches as
input. Their paper presented excellent results with
transformers trained with a large private labelled im-
age dataset containing 300 millions images. The pa-
per concluded that vision transformers do not gen-
eralize well when trained on insufficient amounts of
data. The training of these models involved extensive
computing resources.

We used a Keras implementation10 of the ViT
model, which is distributed under the Apache Li-
cense 2.011. For the experiments, we used the pre-

7https://cloud.google.com/tpu/pricing, 19.04.2021
8https://geizhals.at/, 19.04.2021
9https://github.com/serengil/deepface, 11/03/2021

10https://github.com/faustomorales/vit-keras, 11/03/2021
11https://www.apache.org/licenses/LICENSE-2.0

trained vit b32 model with over 87 million parame-
ters, which we fine-tuned.

Some classification results are presented in Tab. 3.
In particular common attributes such as ’female’ or
’glasses’ are precisely recognized.

6.3. CLIP

We decided to use a novel network [35], de-
noted as CLIP (Contrastive Language-Image Pre-
Training), that has been trained on over 400 mil-
lion text image data from the Internet and also per-
forms very well on new datasets without any fine-
tuning. This network allows a simple textual search
in the image data by entering keywords (sentences).
The possibility of extensive textual input is especially
beneficial for PAR analysis, since different attributes
can be combined. For example, a man with a black
backpack can be searched for by entering ”A photo
of a man with a black backpack.”. The network re-
turns a confidence score (probability) that an image
has the searched attributes.

The framework as well as the models are pub-
lished unter the MIT license12 and can be used for
commercial use. We used the ViT B/16 model, which
has 149 million parameters. We analyzed the CLIP
model with the PAD datasets (Tab. 4) and the model
achieves for common attributes impressive results.
Since the model was trained on text-image pairs re-
trieved from the internet, the model achieves very
good results with ordinary image datasets. Note
that zero-shot CLIP is quite weak on several spe-
cialized, complex, or abstract tasks such as satellite
image classification (EuroSAT and RESISC45) or
lymph node tumor detection (PatchCamelyon). On
the other hand does the model provide the opportu-
nity to search for rare attributes such as gas mask
(Fig. 6) or protective suit (Fig. 7) .

The finally developed PAD method combines two
models. The first model ensures, that the people
in the image are segmented (instance segmentation).
Instance segmentation is a combination of object de-
tection and segmentation. While object detection
identifies objects in the image data, segmentation
assigns an object class to each pixel. For the in-
stance segmentation used here, a network architec-
ture called Mask R-CNN was used [15]. The Mask
R-CNN model was fine-tuned on the OpenImages13

12https://opensource.org/licenses/MIT
13https://storage.googleapis.com/openimages/web/index.html
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Attr. Samples Prec. Rec. F1 mA
Gender 45336 0.85 0.17 0.28 0.75

Age <16 753 0.0 0.0 0.0 0.99
Age 17-30 34178 0.43 0.55 0.48 0.54
Age 31-45 46590 0.60 0.53 0.56 0.54
Age 46-60 2968 0.2 0.0 0.0 0.96
Age >60 192 0.0 0.0 0.0 0.997

Table 2. RAPv2 - Deepface [43] results.

PA100k RAPv2
Attr. Samples Prec. Rec. F1 mA Samples Prec. Rec. F1 mA

Female 45336 0.77 0.77 0.77 0.82 26535 0.88 0.79 0.83 (0.02) 0.90 (0.01)
Hat 4206 0.82 0.30 0.43 0.62 1324 0.70 0.64 0.68 (0.05) 0.68 (0.03)

Glasses 18662 0.70 0.72 0.71 0.71 5700 0.63 0.70 0.65 (0.06) 0.64 (0.02)
Bags 49980 0.70 0.58 0.63 0.68 16482 0.69 0.71 0.68 (0.06) 0.68 (0.04)

Table 3. Evaluation results on four attributes of the fine-tuned ViT model on the PA-100k and RAPv2 datasets.

Figure 5. Examples of Mask R-CNN output. (a) Even
occluded individuals can be identified very well and
segmented with pixel precision. (b) Results from the
RAPv2 [22] and PETA [8] datasets: The segmentation
even works on small images with high accuracy and re-
liability.

and Coco14 dataset. The instance segmentation al-
lows only the image portion containing a person to be
further processed. The background, which may dis-
turb the classification, is eliminated and higher image
resolutions can be processed, which also improves
the classification of the second model. Some classi-
fication results of the CLIP model are presented in
Fig. 6 and 7.

7. Conclusion

This paper proposes a novel PAD methods to ex-
tract useful semantic information for real-world ap-
plications. The main idea is to combine an instance
segmentation model with a vision transformer, which
connnects images and texts. The approach achieves
promising results.

14https://cocodataset.org/#home
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