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INTRODUCTION

* Many different computer vision applications
BRI — Y

&

R Semantic Labeling

* Many are machine learned and sometimes hard to reason about
«  Common question: How good do they work?
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TESTING COMPUTER VISION — AN EXAMPLE
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WHAT WE WANT FROM TESTING

« Multiple solutions for a problem, which is the best? => fairness
* Does the system have weaknesses? If so, which? => challenges/hazards

L/
VISION TESTING
‘ FOR ROBUSTNESS

= We need many test cases which are well selected and organized!
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FINDING AND ORGANIZING CHALLENGES

We performed a Hazard and Operability Study on Computer Vision (CV-HAZOP)
- Established method to find vulnerabilities in the chemical industries

Yields a list of ~1500 potential weakness for CV algorithms
+ https://vitro-testing.com/cv-hazop/

» The Checklist can be used for: T0DO:

. fem 1 em? fem3
- Evaluating datasets o 4
. omp 2
- Combining datasets i
. Comp4
* Planning new datasets

Comp5
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CHALLENGES - EXAMLES
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TIMELINE OF CV-HAZOP
2014 2015 2016 2017 2018

CV-HAZOP

Application to Stereo Vision

Application to
Semantic Labeling

AV VR V4

June18, Salt Lake City

We where co-hosting the CVPR Workshop
> G

Robust Vision Challenge 2018

In conjunction with CYPR2018

http://www.robustvision.net/

with our semantic segmentation dataset

G

http://www.wilddash.cc/

2015] O.Zendel, M.Murschitz, M.Humenberger, and W.Herzner, CV-HAZOP: Introducing test data validation for computer vision, ICCV
2016] O.Zendel, M.Murschitz, M.Humenberger, and W.Herzner, How Good Is My Test Data? Introducing Safety Analysis for Computer Vision, IJCV
2017] O.Zendel, K.Honauer, M.Murschitz, M.Humenberger, and G.D. Fernandez, Analyzing Computer Vision Data - The Good, the Bad and the Ugly, CVPR
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http://www.robustvision.net/
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WILDDASH

» Risk-Aware Benchmarking for
Semantic Segmentation & Instance Segmentation

* Diverse scenes from all over the world

* Includes challenging visual conditions
(e.g. underexposure, overexposure,
poor weather) and negative test cases

* http://www.wilddash.cc
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WILDDASH SCENARIOS

» Driving Scenes from all over the world

* Mined from public internet sources

« Diverse mixture of countries, situations, weather conditions (fairness)

« Many different cameras / noise levels / compression qualities (challenges)
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CV-HAZOP FOR SEMANTIC SEGMENTATION

» Group main hazards by their influence on output image
*  Blur (motion, focus, compression)
* Road Coverage
« Distortion
* Occlusion
»  QOverexposure
« Particles (mist, fog, rain, snow, falling leaves)
* Underexposure
* Intra-Class Variations
*  Windscreen (interior refl., smudges, water)
* Hood

05/12/2018 10



SEVERITY OF VISUAL CHALLENGES

» For each image evaluate severity of each challenge/hazard
* Three severity levels: none, low, high

-~

 Identified hazards guide selection of images for dataset
- > 15 frames per hazard and severity level
* =>now we can investigate the impact of each hazards

05/12/2018 11



NEGATIVE TEST CASES

+ Tests where we expect the algorithm to fail e.g.:
* Mixed up color channels / transmission errors / lots of noise
+ Blocked sensor

«  Completely out-of-scope images

* Good algorithm should mark pixels as invalid (= ,void®)
« Bad algorithm will likely ,hallucinate” events => creates false positives

05/12/2018 12



THE CHALLANGE - SUBMISSIONS

I\Afl‘?};a Classic Negative Impact (loU class)

Algorithm CII%léls Cllggs (gllggs (I:%li EI:gH Cllglsjs Blur Coverage Distortion Hood Occl. Overexp. Particle Screen Underexp. Variation
AHiISS_ROB 39.0% 41.0% 32.2% 53.9% 39.3% 43.6% -11% -12% -2% 24% 0% -27% -13% -13% -28% -16%
MapillaryAl_ROB 38.9% 41.3% 38.0% 60.5% 57.6% 25.0% -15% -5% 4% 23% 0% -23% -12% 21% -25% -6%
PSP-IBN-SA_ROB 38.5% 39.4% 33.6% 60.6% 51.0% 65.3% -18% -3% -5% -18%  -3% -27% -17% -13% -27% -12%
IBN-PSP-SA_ROB 33.6% 34.7% 30.8% 55.1% 38.9% 68.5% -8% 0% 0% 22% 0% -27% -23% -23% -36% -8%
IBN-PSA-SA_ROB 32.5% 33.6% 30.1% 53.8% 39.3% 69.5% -9% 1% 0% -25% 0% -28% -25% -20% -32% -11%
LDN2_ROB 32.1% 34.4% 30.7% 56.6% 47.6% 29.9% 7% 0% -11% -36% 0% -37% -16% -24% -42% -6%
BatMAN_ROB 31.7% 31.4% 17.4% 51.9% 37.3% 36.3% -9% -8% -11% -20% -11% -29% -5% -10% -37% -6%
Mapillary_ROB 31.6% 32.7% 27.5% 55.2% 51.1% 22.7% -12% 7% -15% -23% 1% -26% -12% -28% -31% -3%
ifly 31.4% 31.3% 25.3% 58.0% 51.1% 19.0% -10% -18% -13% -19% 7% -22% 0% -8% -30% 0%
HiSS_ROB 31.3% 31.0% 16.3% 50.3% 34.6% 44.1% -11% -10% -11% -25% -10%  -32% -2% -10% -44% -0%
DeeplLabv3+_CS 30.6% 34.2% 24.6% 49.0% 38.6% 15.7% -13% -15% -15% -34% 0% -55% 17% -23% -53% 6%
AdapNetv2_ROB 29.5% 28.7% 16.5% 51.5% 38.0% 43.6% -15% -10% -20% 24% -14%  -21% -8% 7% -37% 7%
ViocNet++_ROB 29.2% 28.4% 16.4% 51.3% 37.3% 39.4% -19% -8% 17% -23% -14%  -23% 4% 9% -36% -11%
DRN_MPC 28.3% 29.1% 13.9% 49.2% 29.2% 15.9% -17% -8% -15% -32% 5% -47% -3% -12% -34% -9%
VENUS_ROB_update 28.2% 29.8% 22.7% 51.5% 35.0% 50.6% -3% -0% 0% -32% 0% -42% -15% -31% -43% 21%
DN_2_4_CITY_WD 27.2% 28.3% 18.2% 50.6% 38.6% 17.5% -5% -3% -10% -40% 0% -45% -15% -23% -44% 0%
DRN_MPS 26.3% 27.4% 11.9% 47.5% 27.1% 12.9% -19% -12% -14% -32% -8% -51% -9% -12% -45% -14%
VENUS_ROB 25.1% 26.4% 19.8% 46.9% 29.8% 54.4% -2% -0% 0% -37% 0% -49% -17% -30% -48% -16%
GooglLeNetV1_ROB 22.9% 22.4% 17.3% 36.7% 36.6% 50.7% -21% -21% -43% -26%  -9% -29% -21% -28% -46% 2%
APMoE_seg_ROB 22.2% 22.5% 12.6% 48.1% 35.2% 22.8% 1% -2% -23% -23% 4% -44% -12% -11% -46% 0%
PAG_ROB 22.1% 21.7% 12.5% 48.8% 35.6% 34.1% -9% -10% -20% 27% 3% -35% -6% -8% -41% -3%
DRN_CS 14.8% 15.4% 7.1% 28.9% 14.2% 7.2% -43% 9% -29% -29% -15%  -27% -18% -24% -74% -35%
FCN101_ROB 12.2% 11.1% 2.1% 29.3% 8.3% 38.7% 0% 7% -26% 27% -11% -49% -17% -4% -32% -10%
PSPNetv0 8.3% 8.5% 5.5% 17.7% 15.5% 10.1% -17% -33% -10% 20% 0% -34% -26% -52% -30% -32%

[Cached June 13, 2018, 7:42 p.m. UTC+0]
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TESTING COMPUTER VISION — THE ISSUE

expected output
= annotation

05.12.2018
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TESTING COMPUTER VISION — THE ISSUE

expected output
= annotation

« => Synthetic test data by generating both input and expected output
« => Can also be used for training data

05.12.2018
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SYTHETIC TEST DATA - RESULTS

05/12/2018
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SYTHETIC TEST DATA — RESULTS - WEATHER
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SYNTHETIC TEST DATA — AERIAL COLLISION A0 T s
AVOIDANCE

el
rx-*'*'x 8""'*_

A %232 i!ﬁ§$“a§axu Moz

,_.-“"_'-x / Qriginal path
x* Predicted
é—:'x' collision position
05/12/2018 [Mur2016] Murschitz, M., Zendel, O., Humenberger, M., Sulzbachner, C., & Dominguez, G. F. An Experience 19

Report on Requirements-Driven Model-Based Synthetic Vision Testing. Quality Assurance in Computer Vision
2016



CONCLUSION

TODO:

« Use Checklists to increase the quality of datasets o |

Comp

« CV-HAZOP is a good starting point / framework

Comp3

Comp4

» WildDash allows the calculation of hazard impact factors

— allows the backtracking of bad results to actual reasons

Better data = better systems

CVPR 2018 Robust Vision Challenge: http://www.robustvision.net

Access CV-HAZOP and datasets: www.vitro-testing.com yRo
Contact: markus.Murschitz@ait.ac.at, ‘

oliver.zendel@ait.ac.at
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SYTHETIC TEST DATA

Domain
Model

05/12/2018

Scene
Description
Generator

Object
Database

Video Sequence or
Image Generator

Scene

Description System in the

Loop Configurator

AI I AUSTRIAN INSTITUTE
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Images/
Videos

System In The Loop
Test Environment
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SYNTHETIC TEST DATA — COMPLEX g | | Pr—
EVALUATIONS — OBJECT DETECTION

Location Error Confidence
. o ©O | s
low medium high low medium high
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