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Abstract. Convolutional neural networks (CNNs) achieved impressive
recognition rates in image classification tasks recently. In order to ex-
ploit those capabilities, we trained CNNs on a database of photometric
stereo images of metal surface defects, i.e. rail defects. Those defects are
cavities in the rail surface and are indication for further surface degra-
dation right up to rail break. Due to security issues, defects have to be
recognized early in order to take countermeasures in time. By means
of differently colored light-sources illuminating the rail surfaces from
different and constant directions, those cavities are made visible in a
photometric dark-field setup. So far, a model-based approach has been
used for image classification, which expressed the expected reflection
properties of surface defects in contrast to non-defects. In this work, we
experimented with classical CNNs trained in pure supervised manner
and also explored the impact of regularization methods such as unsuper-
vised layer-wise pre-training and training data-set augmentation. The
classical CNN already distinctly outperforms the model-based approach.
Moreover, regularization methods yet yield further improvements.

1 Introduction

Machine vision for quality control is an established field in industrial inspection,
which is characterized by rather well defined acquisition conditions and elaborated
expert knowledge about the universe of possible defects to be detected. Mobile ma-
chine vision, in our case the detection of rail surface defects from a mobile platform,
i.e. a rail car, becomes more difficult w.r.t. imaging conditions and variation of de-
fect appearance. On the other hand, over the last decade, computer vision made
impressive progress in the field of more general detection and classification prob-
lems such as face detection, object classification, text recognition, just to name
a few application areas. Very recently, the renaissance of neural network based
methods delivered impressive results on benchmark and real world data sets for
digit recognition [1], traffic sign recognition [2] and privacy protection by face and
number plate detection from Google StreetView images [3].

Speaking about typical defect detection scenarios in machine vision, the com-
parison to one or a set of so called master image(s), requires to have access to a
well defined model of non-defective parts or objects. Furthermore a reasonable
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metric is necessary which defines whether a deviation from the master image(s)
is acceptable or not. For goods with well defined geometric, i.e. machine parts,
or color properties, e.g. print products, tolerances could be defined by require-
ments. For applications such as the considered one, i.e. surface defect detection
on rails from a mobile platform, the knowledge of origin and appearance of the
defects is not fully understood. There exists the theory that rail surface defects,
which are essentially small holes called headchecks or spallings, result from rail
wear induced by rolling contact fatigue (RCF) [4]. Those cavities are assumed to
emerge from crossing sections of small microcracks on the rails’ surface. Modeling
the image appearance of those defects is based on simplifications and assump-
tions. Defect modeling and detection using spatial correlation statistics [5] and
co-occurrence based descriptors [6] was applied to the task at hand. An approach
based on learning defect detection from data should at first better represent the
data and, finally, increase detection rates.

The appearance of metal surfaces in machine vision depends both on material
properties as well as illumination and acquisition geometry. Appropriate relative
placement of illumination sources, cameras and observed objects enhances spe-
cific object properties, e.g. texture, edges, surface deformations etc., and assists
automatic analysis methods. Active illumination offers a variety of possibilities
with respect to geometrical arrangement, spectral properties and structuring of
light (e.g. pattern projection). Geometrical arrangement of light sources enables
2.5D to 3D analysis approaches such as shape from shading [7] and photometric
stereo [8], where images under different illumination are used to reconstruct the
surface under investigation or, at least, to infer surface characteristics.

After a discussion of related work in Section 2, we describe the approaches,
the model-based as well as the CNNs, in Section 3. Classification results are
presented in Section 4, followed by the conclusion in Section 5.

2 Related Work

Recent progress in the field of neural networks was triggered by a number of
achievements. Deep learning architectures were enabled by increasing computing
power and provide more and higher levels of representation [9]. Data augmen-
tation, e.g. addition of artificial training data derived from the existing data
through distortions, proved to be a powerful tool to avoid overfitting [10]. Com-
mittee methods are able to reduce the error rate by combination of several net-
works, especially when the individual predictions are uncorrelated [1]. Finally,
unsupervised methods for learning features and representations became very
popular and solved problems with purely supervised training, e.g. dependence
on random initialization, slow convergence etc. [11].

The convolutional neural network (CNN) is a neural network architecture
especially designed for image recognition [12]. Outstanding performance of CNNs
was reported for benchmark problems including the MNIST handwritten digit
recognition [1], the Google StreeView house number (SVHN) data set [3] and
the German traffic sign recognition benchmark [2]. CNNs are multilayer neural
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network architectures implementing local receptive fields through convolutional

layers and invariance w.r.t. small geometric deformations through pooling layers.
CNNs are usually trained in supervised fashion, although the Neocognitron [13],
which could be regarded as a predecessor of the CNN, was suggested to be trained
in self-organized fashion. Recently, the application of CNNs for classification of
seven different types of steel defects was described [14].

For metal surfaces the relationship between specular reflection and diffuse
scattering depends primarily on the light wavelength and surface roughness [15].
For precisely polished metal surfaces we could expect that the amount of reflected
light predominantly depends on the placement of light source and observer given
by the law of reflection (incoming angle equals outgoing angle with respect to
surface normal). For grinded metal surfaces some diffuse scattering component
will be overlaid. Concerning the illumination setup, in bright-field illumination
the goal is to direct the illumination from the observed object via reflection to
the sensor, while reflection from the object towards the sensor is avoided in a
dark-field setup. The typical application of a dark-field setup is to direct reflec-
tion towards an image senor in order to detect anomalities, e.g. discontinuities,
edges or distortions. Anomaly detection in milled steel surfaces using various ap-
proaches for 2D texture analysis was discussed [16]. A method using a series of
bright- and dark-field illuminated images and 2.5D analysis was used for solder
paste inspection [17]. An experimental study describes specular reflection from
metallic surfaces and application to coin classification using images illuminated
by light sources differing in location and spectral emission [18].

3 Approach

In this section we discuss the arrangement of lighting and camera components
to obtain surface disruptions from a photometric stereo arrangement. Due to the
common lack of benchmarks for very specialized tasks such as the one discussed
in this paper, we compare the CNN based approach to a model based approach
motivated by photometric considerations of reflection.

3.1 Photometric Acquisition Setup

A dark-field acquisition setup is used to make deviations from a continuous
surface visible, i.e. illumination is only scattered back to the sensor in regions
forming cavities or small hills, see Fig. 1(a). In order to discriminate between
cavities and hills one makes use of spatially localized reflection behavior around
the region in question. Fig. 1(b) shows an idealized cavity to be detected by
analyzing the corresponding sensor’s responses from the edges of the cavity as
shown in Fig. 1(c).

Images obtained with the setup from Fig. 1 are shown in Fig. 2. Various
examples for cavities are shown in Fig. 2(a), whereas Fig. 2(b) shows examples
from other areas such as non-defective or grinded surface as well as regions
showing microcracks.
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Fig. 1. Acquisition setup and model of reflection properties: (a) top-down view of the
head surface using a line camera and illumination by different line light sources under
oblique angles, (b) distorted surface profile and direction of illumination sources, (c)
model of reflectance for a distorted surface profile

3.2 Model Based Detection

Referring to Fig. 1(c) we define the detection position to be in the middle of the
surface profile, i.e. the black dot in Figs. 1(a)-(c). We denote the red and blue
light received by the camera r and b and define four heuristic target detection
equations

r+d/r̄ < 1/tr , r−d/r̄ > tr , b−d/b̄ < 1/tb , b+d/b̄ > tb . (1)

The subscript −d indicates a positional offset in rail direction, e.g. at a distance
of d pixels to the left, with respect to the detection position. The position +d is
located d pixels to the right w.r.t. the detection position. The ri, bi are the red
and blue values for the pixel at offset position i ∈ {−d,+d} and r̄, b̄ are back-
ground estimated by local smoothing. Two different thresholds tr, tb, related to
the different color channels, were derived empirically in order to achieve optimal
detection rates with little false positives. The combination of the four target
detectors is done by taking into account the anti-correlation property, i.e. the
presence of a target is assumed only if at least three detectors coincide in their
decision for a target.

3.3 Learned CNN Detector

A CNN is a multi-layer neural network architecture that is especially suited
for the processing of image data. There are three kinds of layers, convolutional
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(a) (b)

Fig. 2. Image patches acquired by a dark-field setup and photometric illumination: a)
examples for surface defects, b) non-defective samples

layers, pooling layers, and at least one final fully connected layer. A convolutional
layer consists of a filter bank and produces a fixed number of output images
(output maps) from a number of input images (input maps). The input maps
are filtered with the corresponding filters, all filter results related to the same
output map are aggregated (e.g. summed) and a learnable bias value is added.
Finally, the output maps are generated by applying a non-linear function (e.g.
tanh) to all output map pixels. The filter coefficients can be viewed as weights of
neurons, which are represented by the pixels of the output maps. In the training
process, these weights together with the bias values are learned by means of
back propagation. Due to the convolutional processing, all neurons (i.e. pixels)
of an output map have the same weights in form of the corresponding filter
values. This property is called weight sharing and makes CNN training efficient.
Each convolutional layer is followed by a so called pooling layer, in which pixels
within output maps (neurons) are locally aggregated (e.g. max filtering) and
the maps are downsampled. While the convolutional processing captures the
spatial relation between neurons, which represent image features, the pooling
step introduces more spatial tolerance w.r.t. feature positions in the images.
Additionally, the downsampling step in the pooling layers successively engenders
larger receptive fields in following convolutional layers. While the neurons in the
first convolutional layer are sensitive to very local image structures like edges,
neurons in deeper convolutional layers more and more learn combinations of
lower level features. Eventually, the last pooling layer is followed by one fully
connected layer with a number of output neurons corresponding to the number
of image classes that have to be recognized.

We trained CNNs with two convolutional layers with 6 and 12 output maps,
respectively (see Fig. 3). All filter sizes were chosen to be 5×5. The pooling lay-
ers subsequently to the convolutional layers both accomplish 2× 2 max-pooling
and downsampling by a factor of 2. The final fully connnected layer has two
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Fig. 3. CNN architecture for surface defect detection: two convolutional and pooling
layers and a final fully connected layer

output neurons, one indicating surface defects, the other non-surface defects.
Fig. 3 shows the used CNN architecture along with images of input and layer
activations.

Usually, CNNs are trained in supervised manner. However, unsupervised layer-
wise pre-training has also been suggested (e.g. [19]) as a regularization method.
In order to investigate the influence of CNN pre-training on the error rates,
we initialized the convolutional layers’ filter banks with the weights of sparse
auto-encoders trained in unsupervised manner on all 5 × 5 image patches of
corresponding input maps.

Moreover, we used data augmentation of training data sets as another regu-
larizer, where the sizes of the sample sets were increased by a certain factor. For
this purpose, a number of random pixel positions in each sample was displaced
by a random, but bounded offset and the corresponding distorted sample image
was obtained by warping using displacement vector fields interpolated by thin
plate splines [20].

4 Results

We evaluated the CNN based approach by comparing it to a model based ap-
proach with handcrafted parameter adjustment. A total number of 2532 image
positions showing cavities and non-cavities were manually identified. Patches of
size 16 × 16 pixels were extracted from color images with a pixel resolution of
approximately 0.23mm.
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Five-fold cross-validation was used for the estimation of detection rates in the
learned approach. The model-based approach is assessed by ROC-analysis.

4.1 Model Based Detector

With the model-based approach one can adjust the two threshold parameters tr
and tb from Eq. 1 to obtain varying rates of true and false positives. Fig.4(a)
shows two ROC curves, one for tr fixed at the value were the sum of false positive
and negative decisions is at a minimum and one curve for tb fixed under the same
condition, respectively. For the chosen point of operation an error rate of 7.11%
was achieved. A number of false negatives is shown in Fig.4(b), and Fig.4(c)
shows some examples for false positives.

(a) (b)

(c)

t
b
 fixed

t
r
 fixed

Fig. 4. Model based detection results: (a) ROC curves for varying thresholds in blue
and red channels, examples for (b) false negatives and (c) false positives

4.2 CNN Based Detector

Each CNN was trained in supervised manner for 150 epochs with a constant
learning rate of α = 10 and mini-batch size of 75. To determine the influence
of unsupervised pre-training on the error rates, we trained randomly initialized
CNNs in pure supervised manner as well as CNNs, where the convolutional lay-
ers’ filters were initialized with weights from sparse auto-encoders trained in
unsupervised manner on corresponding 5× 5 patches of the layers’ input maps.
The auto-encoders’ weight-decay parameter was set to λ = 0.00001, the spar-
sity parameter ρ = 0.5, and β = 0.5 (influence of sparsity term in optimization
objective function). The maximal number of iterations of the auto-encoder op-
timization procedure was set to 5000, however, they all converged earlier.

Each CNN was trained 3 times on each fold of the five-fold data set and the
minimum error rate CNN of these 3 runs was used for cross validation. Eventu-
ally, the five-fold cross-validation error rates were 1.108% for randomly initialized
CNNs and 0.67% for auto-encoder pre-trained CNNs. This result shows clearly
that unsupervised, layer-wise pre-training had a significant positive impact on
the recognition performance of the CNNs.
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Fig. 5. Sample defect and corresponding six output maps of the first convolutional
layer. (a) sample defect, (b) random initialization, (c) unsupervised pre-trained ini-
tialization (auto-encoders), (d) randomly initialized maps after 150 epochs, and (e)
auto-encoder initialized maps after 150 epochs. Note, that stuctures in b) are still
contained in d), while structures in a) are not perceivable in (d).

By means of the output maps of the first convolutional layers of a randomly
initialized and an unsupervised pre-trained CNN (see Fig. 5), respectively, it
can be perceived, that the basic pre-trained filter structures survive those 150
epochs of supervised CNN training. Apparently, the supervised training task of
the CNNs is set to a meaningful region in parameter space by the auto-encoders’
weights, such that the optimization procedure at least does not get caught in
some random local sub-optimal minimum. Anyhow, this does not mean, that
a single randomly initialized CNN could never be better. Occasionally, random
initialization yields a better CNN, but not in the long term when trained repet-
itively.

A second CNN experiment was run, similar to the first one, but this time the
corresponding folds serving as training data were increased by a factor of 3 by
means of data augmentation. In these cases, the cross-validation error rates were
0.558% for the randomly initialized CNNs and 0.556% for the unsupervised pre-
trained CNNs. We see that data augmentation also significantly improves the
recognition performance of both kinds of CNNs, even more than unsupervised
pre-training. However, unsupervised pre-training obviously could not improve
the performance of CNNs trained on augmented training data any further.
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Our data set is quite small, thus the training is prone to overfitting. It seems
that unsupervised, layer-wise pre-training sets the starting point for supervised
CNN training to a meaningful region in parameter space, thus avoiding optima
due to overfitting. On the other hand, data augmentation prevents overfitting
by increasing variation in the training data. Apparently, both methods improve
the recognition performance by overcoming the drawbacks of small training data
sets.

5 Conclusion

We trained CNNs on photometric stereo images of rail surfaces in a dark-field
setup in order to detect rail surface defects. Up to now this classification task has
been accomplished by means of a model-based approach. However, the detection
performance of the CNNs showed to be significantly better than the model-based
approach’s. Moreover, we could demonstrate how overfitting due to our relatively
small training data set could be alleviated by the use of regularization methods,
i.e. unsupervised layer-wise pre-training and training data augmentation. Reg-
ularization further improved the recognition rates. In future work, we want to
extend the classification task to more classes, in order to be able to recognize
different types of defective and non-defective rail surface structures, whereby
deeper CNNs may be required.
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