

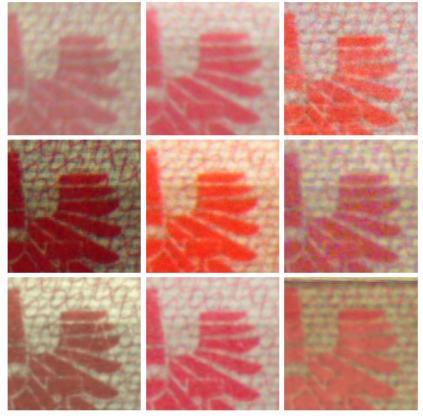
Interoperability Testing of Optical Security Document Readers

Scientific Vision Days 2016

Dr. Peter Wild

Intelligent Vision Systems AIT Austrian Institute of Technology GmbH Vienna, Austria

Peter Wild | Scientist, AIT / High Performance Vision


What is this Talk About?

Motivation

- Authentication of security documents
 - multiple modular devices
 - single database of security document templates

Goals of the study

- Benchmarking
 - features relevant to image quality
- Interoperability
 - new methods for harmonized use
- Compression
 - compact storage (document DB)
 - transmission of security features

Security patch acquired by different readers

FastPass – The Project

Tested Devices

 $3M \ \mathrm{AT9000} \ \mathrm{MK2}$

ARH Combo Smart

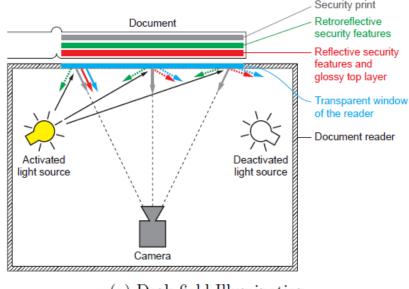
 ${\rm ARH}\;{\rm PRMc}$

Bundesdruckerei VE 600 DESKO ICON Gen I

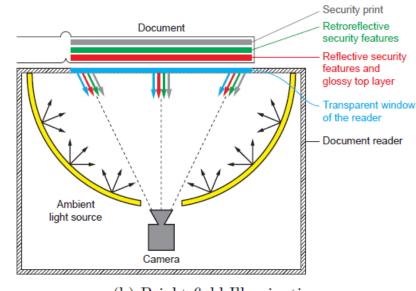
DESKO PENTA Gen4.0

Regula 7024m.111

Regula 7034.111



Suprema RealPass-V



Dark Field vs. Bright Field

(a) Dark-field Illumination

- Multiple point light sources
- Difference (reflection image) with potential for inspecting OVDs
- Easier colour calibration, but multiple acquisitions required

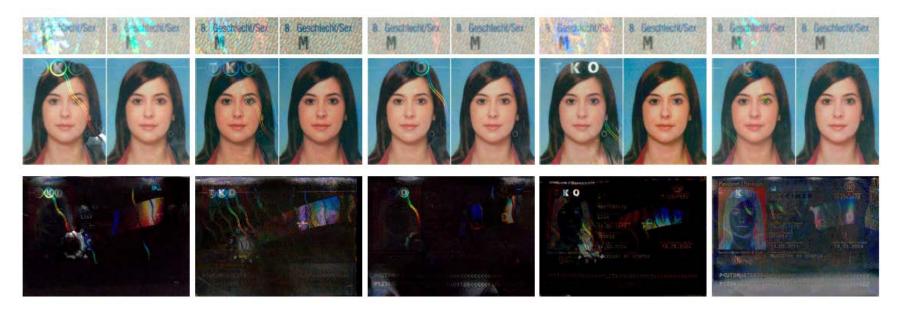
(b) Bright-field Illumination

- **Single** large illumination source
- Preserves high dynamic range and at the same time produces an almost glare-free image
- Single fast acquisition, but more expensive

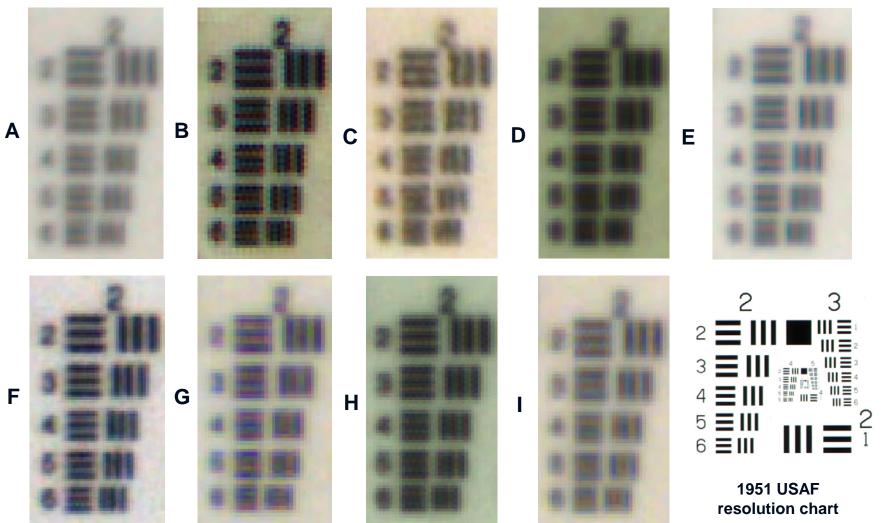
Dark Field vs. Bright Field - Examples

(a) Dark-field image without anti-glare

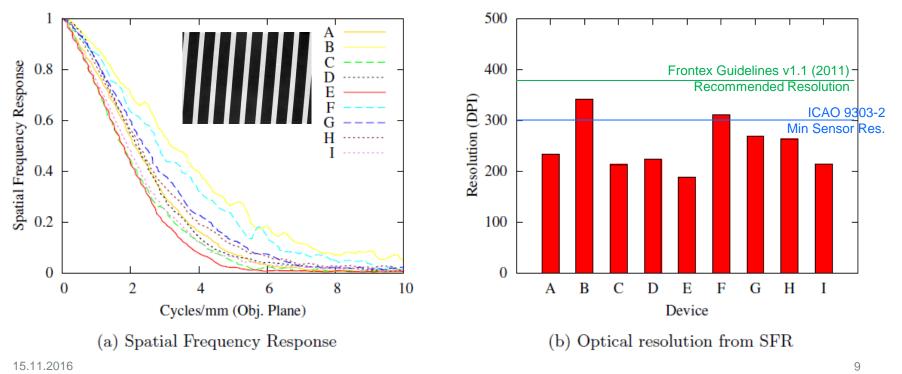
(b) Dark-field image with suboptimal anti-glare


(d) Dark-field image with good anti-glare

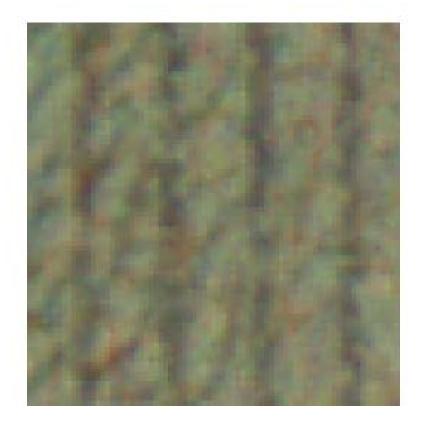
Anti-Glare


- 6 out of 9 devices featured anti-glare functionality; 3 out of 6 with consistent OVD-free images
- Minor accordance between glare responses of the same document.
- Ideally, glare-free and separate reflection image(s) are available.

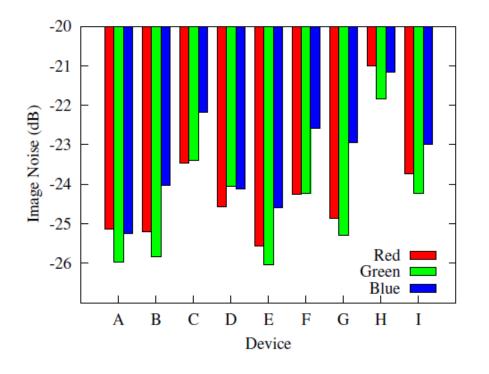
Optical Resolution



Optical Resolution - Results


- Measured sensor resolutions matched with specs (approx. +/-1.2%)
- Spatial Frequency Response (SFR) using slanted edge (ISO/IEC 12233) revealed much weaker true optical resolution power (up to -50%)
- All measured optical resolutions ranged below 350 DPI (Frontex recommendation: >385 DPI)

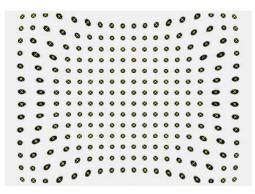
Optical Resolution - Examples

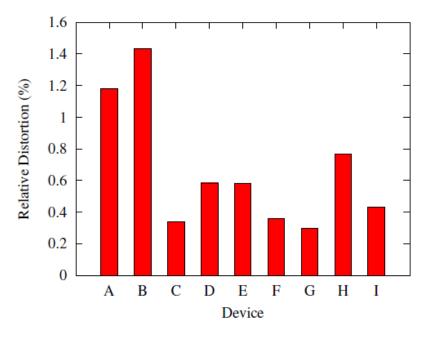

Microprinted Text

Standard Security Print

Image Noise

Noise w/o glare suppression

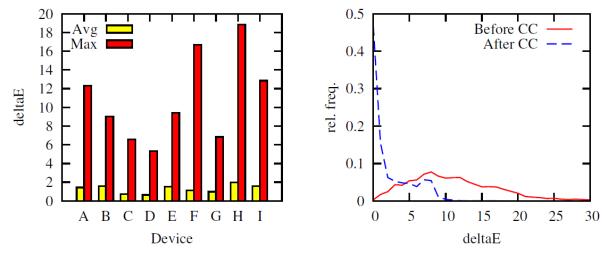

- Assessed in VIS spectrum using white/black checkerboard pattern
- Broad range of sensor noise levels (4 dB)
- Image noise increases when glare reduction is turned on (devices G and I)



Geometric Distortion

- Low geometric distortion (< 1.5%, invisible to humans) for all readers
- Most likely, devices are already calibrated

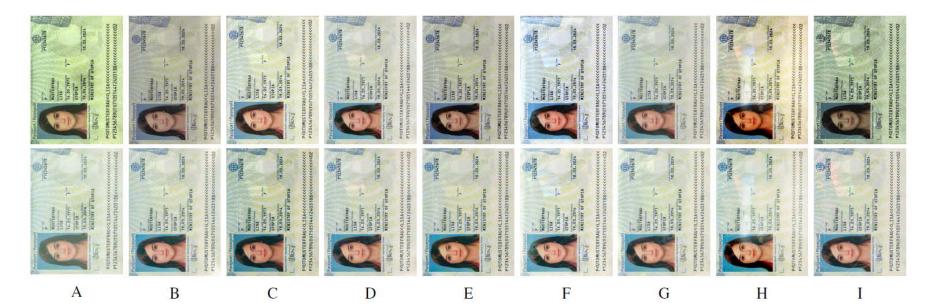
Illustrated wave distortion


Maximum radial distortion

Colour Accuracy

- Perceptual distance between two colours: DeltaE metric
- Calibration based on the IT8.7/8-1993 **colour target** (VIS image)
- FFC (Flat Field Correction): compensate different sensitivity of sensor detectors & illumination
- CC (Colour calibration) improves colour similarity for equal passports significantly

(a) Colour accuracy after CC


(b) Before vs. after calibration

Before and After: CC

- Mean and standard deviations of DeltaE were clearly improved
- Before: mean = 11.629; std = 6.228,
- After: mean = 2.587; std = 2.829

Calibration Impact

 Pairwise image similarities using PSNR / SSIM metrics for entire passport images:

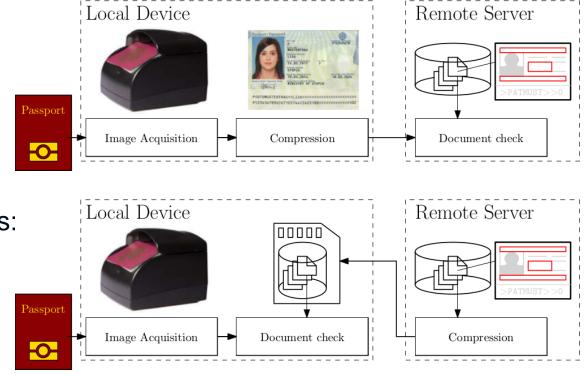
$$SSIM(I,O) = \frac{(2\mu_I\mu_O + c_1)(2\sigma_{IO} + c_2)}{(\mu_I^2 + \mu_O^2 + c_1)(\sigma_I^2 + \sigma_O^2 + c_2)} \qquad PSNR = 20\log_{10}\left(\frac{2^8 - 1}{\sqrt{MSE}}\right)$$

	PSNR (dB)			SSIM		
	Mean μ	StdDev σ	AbsErr e	Mean μ	StdDev σ	AbsErr e
CC and FFC	23.91	3.04	0.992	0.956	0.020	0.006
FFC only	19.37	2.44	0.798	0.876	0.056	0.018
No calib.	19.45	2.60	0.849	0.886	0.050	0.016

- FFC: overlap of confidence intervals for PSNR (19.37 vs. 19.45 dB) and SSIM (0.876 vs. 0.886),
- CC: image quality is clearly enhanced for PSNR (23.91 dB) and SSIM (0.956).

Benchmarking & Interoperability Conclusions

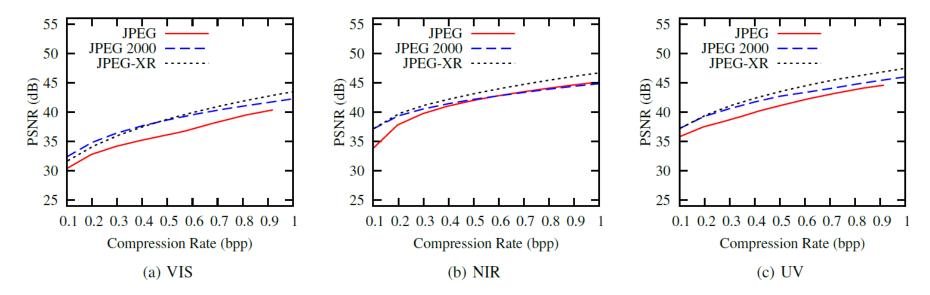
- Effective optical resolution does not fully exploit capabilities
- Relatively broad range of sensor noise levels (4 dB range)
- All readers provided very low geometrical lens distortions
- Illumination wavelength / bandwidth one of several factors influencing quality
- Camera settings & image processing have much stronger impact
- Glare reduction is essential for accurate processing of glossy documents
- Shading and color calibration are necessary for successful interoperability



Compression

- Motivation:
 - Mobile equipment

Questions:


- Up to which bitrate can/should passport images be compressed?"
- "Which compression algorithm is most efficient for passports?"

Passport Compression Behaviour

- Assessment via PSNR with uncompressed reference: $PSNR = 20 \log_{10} \left(\frac{2^8 1}{\sqrt{MSE}} \right).$
- Best performance for JPEG XR (less blurred content), followed by JPEG 2000 and JPEG
- Setup for retaining >40 dB PSNR:
 0.6 bpp for JPEG-XR, 0.7 bpp for JPEG 2000, and 1.0 bpp for JPEG.

Summary

Benchmarking	 Identified optical resolution & colour calibration weaknesses.
Interoperability	 Colour correction improves patch- based comparison
Compression	 Best: JPEG XR over JPEG 2000 and JPEG for lossy comp.
Further Tasks	• Towards interoperable automated document authentication

Future Work

OVDs	Harmonized inspection of DOVIDsInteroperable descriptors	
Quality	 Quality indicators for inspection Relative importance of device characteristics 	
Mobile	 Mobile travel document authentic. Fast MRZ & visible zone data read 	
Evaluation	 ABC-specific dataset FastPass Trial @ VIA 	

AIT Austrian Institute of Technology

your ingenious partner

Dr. Peter Wild Peter.Wild@ait.ac.at